Energy conversion rate from subinertial surface tides to internal tides ...

<!--!introduction!--> Subinertial, topographically trapped diurnal internal tides are an important energy source for turbulent mixing in the subarctic oceans. However, their generation may not be estimated by the conventional barotropic-to-baroclinic conversion because their vertical structure...

Full description

Bibliographic Details
Main Author: Tanaka, Yuki
Format: Article in Journal/Newspaper
Language:unknown
Published: GFZ German Research Centre for Geosciences 2023
Subjects:
Online Access:https://dx.doi.org/10.57757/iugg23-0180
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5016370
Description
Summary:<!--!introduction!--> Subinertial, topographically trapped diurnal internal tides are an important energy source for turbulent mixing in the subarctic oceans. However, their generation may not be estimated by the conventional barotropic-to-baroclinic conversion because their vertical structure is sometimes barotropic unlike superinertial internal tides that are always baroclinic. Here, a new energy diagram is presented, in which the barotropic mode is decomposed into the surface and topographic modes, with the latter being classified as part of the internal modes together with the baroclinic mode.The energy equation for the newly defined topographic mode is then derived, providing an appropriate formulation of the energy conversion rate from the subinertial surface tides to the topographically trapped internal tides. A series of numerical experiments confirm that the formulation successfully predicts the energy conversion rate for various cases, with the relative contribution of the baroclinic and ... : The 28th IUGG General Assembly (IUGG2023) (Berlin 2023) ...