Disease-driven mass mortality event leads to widespread extirpation and variable recovery potential of a marine predator across the eastern Pacific

AbstractThe prevalence of disease-driven mass mortality events is increasing, but our understanding of spatial variation in their magnitude, timing, and triggers are often poorly resolved. Here, we use a novel range-wide dataset comprised of 48,810 surveys to quantify how Sea Star Wasting Disease af...

Full description

Bibliographic Details
Main Authors: Hamilton, Sara, Saccomanno, Vienna, Heady, Walter, Gehman, Alyssa-Lois, Lonhart, Steve, Beas-Luna, Rodrigo, Francis, Fiona, Lee, Lynn, Rogers-Bennett, Laura, Salomon, Anne, Gravem, Sarah
Format: Dataset
Language:unknown
Published: Scholars Portal Dataverse 2022
Subjects:
Online Access:https://dx.doi.org/10.5683/sp3/nkmssf
https://dataverse.scholarsportal.info/citation?persistentId=doi:10.5683/SP3/NKMSSF
Description
Summary:AbstractThe prevalence of disease-driven mass mortality events is increasing, but our understanding of spatial variation in their magnitude, timing, and triggers are often poorly resolved. Here, we use a novel range-wide dataset comprised of 48,810 surveys to quantify how Sea Star Wasting Disease affected Pycnopodia helianthoides, the sunflower sea star, across its range from Baja California, Mexico to the Aleutian Islands, USA. We found that the outbreak occurred more rapidly, killed a greater percentage of the population, and left fewer survivors in the southern half of the species’ range. Pycnopodia now appears to be functionally extinct (> 99.2% declines) from Baja California, Mexico to Cape Flattery, Washington, USA and exhibited severe declines (> 87.8%) from the Salish Sea to the Gulf of Alaska. The importance of temperature in predicting Pycnopodia distribution rose 450% after the outbreak, suggesting these latitudinal gradients may stem from an interaction between disease severity and warmer waters. We found no evidence of population recovery in the years since the outbreak. Natural recovery in the southern half of the range is unlikely over the short-term and assisted recovery will likely be required for recovery in the southern half of the range on ecologically-relevant time scales.