Advanced Study on Iron Fertilization with Enhanced Phytoplankton Productivity under Minimal Sulfur Compounds and Grazing Control Analysis in HNLC Region

The present study investigated quantitatively the significance of HNLC (high-nutrient low-chlorophyll) regions and its grazing control with the improved iron fertilization for climate change. The limitation of iron (Fe) for phytoplankton growth in HNLC regions was confirmed by sulfur compounds (S) s...

Full description

Bibliographic Details
Main Authors: Tai-Jin Kim, G. H. Hong, D. G. Kim, Baskaran, Mark
Format: Book Part
Language:unknown
Published: Zenodo 2021
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.5188496
https://zenodo.org/record/5188496
Description
Summary:The present study investigated quantitatively the significance of HNLC (high-nutrient low-chlorophyll) regions and its grazing control with the improved iron fertilization for climate change. The limitation of iron (Fe) for phytoplankton growth in HNLC regions was confirmed by sulfur compounds (S) such as volcanic ash and hydrogen sulfide (H 2 S) in batch cultures, whose chemical sediment of Fe 3 S 4 showed 4.06 wt %. The technologies developed for iron fertilization since 1993 till now were not practical to provide sufficient amounts of bioavailable iron due to sedimentary iron sulfides induced by undersea volcanic sulfur compounds. The proposed technology for iron fertilization was improved to enhance the bioavailable iron to phytoplankton by keeping minimal sulfur compounds in HNLC regions. The low productivity of phytoplankton by grazing control in HNLC regions was 6% diatoms whose 52% was grazed by copepods and 42% by krill on the basis of data analysis in 2000 EisenEx Experiment at boundary of Antarctic and African tectonic plates. All of the previous iron fertilization experiments were conducted at volcanic sulfur compounds enriched HNLC regions. The present study revealed that the enhanced phytoplankton productivity in batch culture without sedimentary iron sulfides can be possible only if sulfur compounds are minimal, as is in Shag Rocks of South Georgia in Scotia Sea in the Southern Ocean.