Pseudomonas stutzeri MLA9, una cepa marina con alto potencial para degradar pireno

RESUMEN Una alternativa para remover los hidrocarburos aromáticos policíclicos (HAP) del ambiente es usando bacterias hidrocarbonoclastas. El objetivo de este trabajo fue comenzar con la caracterización de la cepa bacteriana marina Pseudomonas stutzeri MLA9 con potencial para degradar el pireno. La...

Full description

Bibliographic Details
Main Authors: Araujo-Palomares, Cynthia Lizzeth, Ramos- Mendoza, Ileana Sarahí, Silva-Jiménez, Hortencia
Format: Text
Language:Spanish
Published: Zenodo 2019
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.5090448
https://zenodo.org/record/5090448
Description
Summary:RESUMEN Una alternativa para remover los hidrocarburos aromáticos policíclicos (HAP) del ambiente es usando bacterias hidrocarbonoclastas. El objetivo de este trabajo fue comenzar con la caracterización de la cepa bacteriana marina Pseudomonas stutzeri MLA9 con potencial para degradar el pireno. La cepa bacteriana previamente fue identificada por el sistema MALDI-Biotyper y confirmado en este estudio por la secuenciación del gen ribosomal 16S como Pseudomonas stutzeri. La cepa bacteriana puede crecer en medio mínimo suplementario con pireno, fenantreno o naftaleno como su única fuente de carbono y energía, siendo el pireno su mejor sustrato. Análisis moleculares han permitido la detección de genes que codifican para dioxigenasas de hidroxilación y de escisión, enzimas que participan en la ruta de degradación de HAP. Además, P. stutzeri MLA9 es una cepa productora de biosurfactantes y formadora de biopelículas, mecanismos que pueden facilitar el proceso de degradación. Lo anterior apunta a P. stutzeri MLA9 como una excelente candidata para continuar los estudios de degradación de HAP y su posible aplicación en procesos de biorremediación. ABSTRACT An alternative to remove polycyclic aromatic hydrocarbons (PAH) of the environment is using hydrocarbonoclastic bacteria. The aim of this work was to begin with the characterization of the marine bacterial strain MLA9 with potential to degrade pyrene. The isolate was previously identifying used MALDI-Biotyper and, ¡n this study, its identity was confirmed by 16S ribosomal gene sequencing as Pseudomonas stutzerí. The bacterial strain can grow in minimal médium supplemented with pyrene, phenanthrene or naphthalene as solé carbón and energy source, being pyrene the best substrate. Molecular analysis has allowed hydroxylating and excisión dioxygenases genes detection, enzymes that participating in PAH degrading pathway. Moreover, P. stutzerí MLA9 is a biosurfactant producer and biofilm former, mechanisms could facilítate the degrade process. To above described, P. stutzerí MLA9 appears to be an excellent candidate to continué PAH degradation studies and its potential application on bioremediation processes. : {"references": ["Johnsen AR, Wick LY, Harms H. Principies of microbial PAH-degradation in soil. Environ Pollut. 2005;133(l):71-84.", "Seo JS, Keum YS, L\u00a1 QX. Bacterial degradation of aromatic compounds. Int J Environ Res Public Health. 2009; 6:278-309 p.", "Bamforth SM, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. J Chem Technol Biotechnol. 2005; 80(7):723-36.", "Eriksson M, Sodersten E, Yu Z, Dalhammar G, Mohn WW. Degradation of Polycyclic Aromatic Hydrocarbons at Low Temperature under Aerobic and Nitrate-Reducing Conditions in Enrichment Cultures from Northern Soils. Appl Environ Microbiol. 2003;69(l): 275-84.", "Haritash AK, Kaushik CP. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater. 2009;169(l- 3):1-15.", "C\u00e9bron A, Norini M-P, Beguiristain T, Leyval C. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHD\u00dc) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods. 2008;73(2): 148-59.", "Badejo AC, Badejo AO, Shin KH, Chai YG. A Gene Expression Study of the Activities of Aromatic Ring-Cleavage Dioxygenases in Mycobacterium gilvum PYR-GCK to Changes in Salinity and pH during Pyrene Degradation. PLoS One. 2013;8(2). e58066.", "Kumar M, Le\u00f3n V, De Sisto Materano A, Ilzins OA, Luis L. Biosurfactant production and hydrocarbon-degradation by halotolerant and thermotolerant Pseudomonas sp. World J Microbiol Biotechnol. 2008;24(7): 1047-57.", "Rodrigues AC, Wuertz S, Brito AG, Mel\u00f3 LF. Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: Kinetics and physiological aspects. Biotechnol Bioeng. 2005;90(3):281-9.", "Fuentes S, Barra B, Caporaso JG, Seeger M. From Rare to Dominant\u00fc: a Fine-Tuned Soil Bacterial Bloom during. Appl Environ Microbiol. 2016;82(3):888-96.", "Silva-Jim\u00e9nez H, Araujo-Palomares CL, Mac\u00edas-Zamora JV, Ram\u00edrez-\u00c1lvarez N, Garc\u00eda-Lara B, Corrales-Escobosa AR. Identification by MALDI- TOF MS of Environmental Bacteria with High Potential to Degrade Pyrene. J Mex Chem Soc. 2018;62(2):l-13.", "Jim\u00e9nez JI, Nogales J., Garc\u00eda JL, D\u00edaz E. A genomic view of the catabolic of aromatic compounds in Pseudomonas. ImTimmis KN, Ed. Handb Hydrocarb Lipid Microbiol. 2009; 1298-1325.", "Moscoso F, Deive FJ, Longo MA, Sanrom\u00e1n MA. Insights into polyaromatic hydrocarbon biodegradation by Pseudomonas stutzeri CECT 930: operation at bioreactor scale and metabolic pathways. Int J Environ Sci Technol. 2015;12(4):1243-52.", "Moscoso F, Deive FJ, Longo MA, Sanrom\u00e1n MA. Technoeconomic assessment of phenanthrene degradation by Pseudomonas stutzeri CECT 930 in a batch bioreactor. Bioresour Technol. 2012;104:81-9.", "Aitken MD, Kazunga C. Products from the Incompleto Metabolism of Pyrene by Polycyclic Aromatic Hydrocarbon-Degrading Bacteria. Appl Environ Microbiol. 2000;66(5): 1917-22.", "Kong J, Wang H, Liang L, L\u00a1 L, Xiong G, Hu Z. Phenanthrene degradation by the bacterium Pseudomonas stutzeri JP1 under low oxygen condition. Int Biodeterior Biodegrad. 2017;123:121-6.", "Mohanram R, Jagtap C, Kumar P. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor. Mar Pollut Bull. 2016;105(l):131- 8.", "Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basical local alignment seach tool. J Mol Biol. 1990; 215: 403-10.", "Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Versi\u00f3n 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7): 1870\u20144.", "Singh P, Tiwary BN. Optimization of conditions for polycyclic aromatic hydrocarbons (PAHs) degradation by Pseudomonas stutzeri P2 isolated from Chirimiri coal mines. Biocatal Agrie Biotechnol. \t2017;10:20-9.", "Satpute SK, Bhawsar BD, Dhakephalkar PK, Chopade BA. Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J Mar Sci. 2008;37(3):243- 50.", "OToole G, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365. Mol Microbiol. 1998;28(3):449-61.", "Santos I, Martin M, Carlton D, Amorim C, Castro P, Hildenbrand Z, et al. MALDI-TOF MS for the Identification of Cultivable Organic-Degrading Bacteria in Contaminated Groundwater near Unconventional Natural Gas Extraction Sites. Microorganisms. 2017;5(3):47.", "PopoviQ NT, KazaziQ SP, Strunjak-PeroviQ I, Qoz-Rakovac R. Differentiation of environmental aquatic bacterial \u00a1solates by MALDI-TOF MS. Environ Res. 2017; 152:7-16.", "Hasegawa M, Kishino H, Yano T aki. Dating of the human-ape splitting by a molecular dock of mitochondrial DNA. J Mol Evol. 1985;22(2): 160-74.", "Ma J, Xu L, Jia L. Characterization of pyrene degradation by Pseudomonas sp. strain Jpyr-1 isolated from active sewage sludge. Bioresour Technol. 2013;140:15-21.", "Ghosh I, Jasmine J, Mukherji S. Biodegradation of pyrene by a Pseudomonas aeruginosa strain RS1 isolated from refinery sludge. Bioresour Technol. 2014;166:548-58.", "Amini I, Tahmourespour A, Abdollahi A. Biodegradation of polycyclic aromatic hydrocarbons by Pseudomonas species. Pollution. 2017;3(l):9- 19.", "Sope\u00f1a F, Laiz L, Morillo E, Sanchez-Trujillo MA, Villaverde J, Jurado V, et al. Phenanthrene Biodegradation by Pseudomonas xanthomarina Isolated from an Aged Contaminated Soil. Clean - Soil, Air, Water. 2014;42(6):785-90.", "Feijoo-Siota L, Rosa-Dos-Santos F, De Miguel T, Villa TG. Biodegradation of naphthalene by Pseudomonas stutzeri in marine environments: Testing cells entrapment in calcium alginate for use in water detoxification. Bioremediat J. 2008; 12(4): 185-92.", "Jin J, Yao J, Zhang Q, Liu J. Biodegradation of pyrene by Pseudomonas sp. JPN2 and its initial degrading mechanism study by combining the catabolic nahAc gene and structure-based analyses. Chemosphere. 2016;164:379-86.", "Ghosal D, Ghosh S, Dutta TK, Ahn Y. Current State of knowledge \u00a1n microbial degradation of polycydic aromatic hydrocarbons (PAHs): A review. Front Microbiol. 2016;7:1396. doi: 10.3389/fmicb.2016.01369", "Obayori OS, Ilori MO, Adebusoye SA, Oyetibo GO, Amund OO. Pyrene-degradation potentials of Pseudomonas species isolated from polluted tropical soils. World J Microbiol Biotechnol. 2008;24(ll):2639-46.", "Parales RE, Lee K, Resnick SM, Jiang H, Lessner DJ, Gibson DT. Substrate specificity of naphthalene dioxygenase: Effect of specific amino acids at the active site of the enzyme. J Bacteriol. 2000;182(6):1641-9.", "Nolan LC, O'Connor KE. Dioxygenase- and monooxygenase-catalysed synthesis of cis- dihydrodiols, catechols, epoxides and other oxygenated produc\u00eds. Biotechnol Lett. 2008;30(ll):1879-91.", "Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, et al. Structure of an aromatic-ring-hydroxylating dioxygenase naphthalene 1,2-dioxygenase. Structure. 1998;6(5):571-86.", "Tavakoli A, Hamzah A. Characterization and evaluation of catechol oxygenases by twelve bacteria, isolated from oil contaminated soils in Malaysia. Biol J Microorg. 2017;5(20):71-80.", "Kaskatepe B, Yildiz S. Rhamnolipid biosurfactants produced by Pseudomonas Species. Brazilian Arch Biol Technol. 2016;59:1-16.", "Tuleva BK, Ivanov GR, Christova NE. Biosurfactant production by a new Pseudomonas putida strain. Zeitschrift fur Naturforsch - Sect C J Biosci. 2002;57(3-4):356-60.", "Vasileva-Tonkova E, Sotirova A, Galabova D. The effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater. Curr Microbiol. 2011;62(2):427-33.", "Gunther IV NW, Nu\u00f1ez A, Fett W, Solaiman DKY. Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol. 2005;71(5):2288-93.", "D\u00e9ziel E, Paquette G, Villemur R, Lepine F, Bisaillon J, Le OIS. Biosurfactant Production by a Soil Pseudomonas Strain Growing on Polycydic Aromatic Hydrocarbons. Appl Environ Microbiol. 1996; 62(6): 1908-12.", "Abdel-Mawgoud AM, L\u00e9pine F, D\u00e9ziel E. Rhamnolipids: Diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol. 2010;86(5): 1323-36.", "Perfumo A, Rudden M, Marchant R, Banat M. Biodiversity of Biosurfactants and ROles in Enhancing the (Biojavailability of Hydrophobic Substratos. In: Krell T, Ed. Cellular Ecophysiology of Microbe. Handb Hydrocarb Lipid Microbiol. 2017; 1-29.", "Palomino RA, Romero G, Gonz\u00e1lez-Valdez A, Sober\u00f3n-Ch\u00e1vez G, Guti\u00e9rrez SM, Merino FA. Presencia de genes rhlAB, rhIR y rhIC en Pseudomonas aeruginosa nativas sobreproductoras de ramnol\u00fapidos. Rev Per\u00fa Biol. 2017;24(3):293- 302.", "Toribio J, Escalante AE, Sober\u00f3n-Ch\u00e1vez G. Rhamnolipids: Production in bacteria other than Pseudomonas aeruginosa. Eur J Lipid Sci Technol. 2010;112(10):1082-7.", "Yao X, Sun Q, Liu W, Yin X, Pei G, Wang Y, et al. Complete Genome Sequence of Serrada rubidaea Isolated in China. Genome Announc. 2016;4(2):e00283-16.", "De Maayer P, Chan WY, Venter SN, Toth IK, Birch PRJ, Joubert F, et al. Genome sequence of Pantoea ananatis LMG20103, the causative agent of Eucalyptus blight and dieback. J Bacteriol. 2010;192(ll):2936-7.", "Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FSL. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nudeic Acids Res. 2016;44(Dl):D646-53.", "Singh DN, Tripathi AK. Coal induced production of a rhamnolipid biosurfactant by Pseudomonas stutzeri, isolated from the formation water of Jharia coalbed. Bioresour Technol. 2013;128:215-21.", "Johnsen AR, Karlson U. Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol. 2004;63(4):452-9.", "Edwards SJ, Kjellerup B V. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy met\u00e1is. Appl Microbiol Biotechnol. 2013;97(23):9909-21.", "Khoei NS, Lampis S, Turner RJ, Vallini G, Andreolli M. A comparison of the response of two Burkholderia fungorum strains grown as planktonic cells versus biofilm to dibenzothiophene and select polycyclic aromatic hydrocarbons . Can J Microbiol. 2016;62(10):851-60.", "Mitra A, Mukhopadhyay S. Biofilm mediated decontamination of pollutants from the environment. AIMS Bioeng. 2016;3(l):44-59.", "Martirani-Von Abercron S-M, Mar\u00edn P, Solsona-Ferraz M, Casta\u00f1eda-Cata\u00f1a M-A, Marqu\u00e9s S. Naphthalene biodegradation under oxygen- limiting conditions: community dynamics and the relevance of biofilm-forming capacity. Microb Biotechnol. 2017; 10(6): 1781-96.", "Dasgupta D, Ghosh R, Sengupta TK. Biofilm- Mediated Enhanced Crude Oil Degradation by Newly Isolated Pseudomonas Species. ISRN Biotechnol. 2013;2013: Artide ID 250749."]}