Review Of Downscaling Methods In Climate Change And Their Role In Hydrological Studies

Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. The world wide observe...

Full description

Bibliographic Details
Main Authors: Bhuvandas, Nishi, P. V. Timbadiya, P. L. Patel, P. D. Porey
Format: Text
Language:English
Published: Zenodo 2014
Subjects:
GCM
Online Access:https://dx.doi.org/10.5281/zenodo.1096433
https://zenodo.org/record/1096433
Description
Summary:Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. The world wide observed changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although the effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest. : {"references": ["Bates, B. C., Kundzewicz, Z. W., Wu, S. and Palutikof, J. P., Climate\nChange and Water. Technical Paper of the Intergovernmental Panel on\nClimate Change, 2008, IPCC Secretariat, Geneva, pp 210.", "Jolley, T. J. and Wheater, H. S., A large-scale grid-based hydrological\nmodel of the Severn and Thames catchments. Water Environ. J., 1996,\n10, 253-262.", "Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.\nB., Tignor, M. and Miller, H. L., IPCC, 2007: Climate Change 2007:\nThe Physical Science Basis. Contribution of Working Group I to the\nFourth Assessment Report of the Intergovernmental Panel on Climate\nChange, 2007.", "Carter, T. R., Parry, M. L., Harasawa, H. and Nishioka, S., IPCC\ntechnical guidelines for assessing climate change impacts and adaptions.\nIPCC special report to Working Group II of IPCC,1994, University\nCollege, London. 1994, pp.59.", "Acreman, M. C., The hydrology of the UK: A study of change. 1st\nedition. London, Routledge, 2000.", "Wheater, H. S., Progress in and prospects for fluvial flood modelling.\nPhil. Trans. R. Lond. A., 2002, 360, 1409-1431.", "Huntington, T. G., Evidence for intensification of the global water cycle:\nReview and synthesis. J. Hydrol., 2006, 319, 83-95.", "Zhang, X., Zwiers, F. W., Hegerl, G. C., Lambert, F. H., Gillett, N. P.,\nSolomon, S., Stott, P. A. and Nozawa, T., Detection of human influence\non twentieth-century precipitation trends. Nature, 2007, 448, 461-465.", "Milly, P. C. D., Dunne, K. A. and Vecchia, A. V., Global pattern of\ntrends in streamflow and water availability in a changing climate.\nNature, 2005, 438, 347-350.\n[10] Wilby, R. L., Beven, K. J. and Reynard, N. S., Climate change and\nfluvial flood risk in the UK: more of the same? Hydrol. Process., 2008,\n22, 2511-2523.\n[11] Maurer, E. P., Uncertainty in hydrologic impacts of climate change in\nthe Sierra Nevada, California under two emissions scenarios. Clim.\nChange, 2007, 82, 309-325.\n[12] Harrison, G. P., Whittington, W. and Wallace, R. A., Climate change\nimpacts on financial risk in hydropower projects. IEEE Trans. on Power\nSys., 2003, 18, 1324-1330.\n[13] Christensen, N., Wood, A., Voisin, N., Lettenmaier, D. and Palmer, R.,\nThe effects of climate change on the hydrology and water resources of\nthe Colorado river basin. Clim. Change, 2004, 62, 337-363.\n[14] Wheater, H. S., Flood hazard and Management a UK perspective. Phil.\nTrans. of the Royal Soc., 2006, 364, 2135-2145.\n[15] Mortsch, L., D. and Quinn, F. H., Climate change scenarios for great\nlakes basin Ecosystem Studies. Limnol. Oceanogr., 1996, 41, 903-911.\n[16] Probst, J. L. and Tardy, Y., Long range streamflow and world\ncontinental runoff fluctuations since the beginning of this century. J.\nHydrol., 1987, 94, 289-311.\n[17] Guetter, A. K. and Georgakakos, K. P., River outflow of the\nconterminous United States, 1939- 1988. Bull. Am. Meteorol. Soc., 1993,\n74, 1873-1891.\n[18] Lammers, R. B., Shiklomanov, A. I., Vorosmarty, C. J., Fekete, B. M.\nand Peterson, B. J., Assessment of contemporary Arctic river runoff\nbased on observational discharge records. J. Geophys. Res., 2001, 106,\n3321-3334.\n[19] Mauget, S. A., Multidecadal Regime Shifts in US Streamflow,\nPrecipitation, and Temperature at the End of the Twentieth Century. J.\nClim., 2003, 16, 3905-3916.\n[20] Labat, D., Godderis, Y., Probst, J. L. and Guyot, J. L., Evidence for\nglobal runoff increase related to climate warming. Adv. Water Resour.,\n2004, 27, 631-642.\n[21] Legates, D. R., Lins, H. F. and McCabe, G. J., Comments on Evidence\nfor global runoff increase related to climate warming by Labat et al. Adv.\nWater Resour., 2005, 28, 1310-1315.\n[22] Lettenmaier, D. and Gan, T., Hydrologic Sensitivities of the\nSacramento-San Joaquin River Basin, California, to Global Warming.\nWater Resour. Res., 1990, 26, 69-86.\n[23] McCabe Jr, G. J. and Wolock, D. M., Climate change and the detention\nof trends in annual runoff. Clim. Res., 1997, 8, 129-134.\n[24] IPCC (Intergovernmental Panel on Climate Change), Climate models\nand their evaluation Climate Change: The Physical Science Basis.\nContribution of Working Group I to the Fourth Assessment Report of\nthe Intergovernmental Panel of Climate Change (ed. Solomon, S., et al.),\nCambridge University Press, 2007.\n[25] Mondal, A., and Mujumdar, P. P., On the basin-scale detection and\nattribution of human-induced climate change in monsoon precipitation\nand streamflow. Water Resour. Res., 2012, 48, W10520,\ndoi:10.1029/2011WR011468.\n[26] Steinschneider, S., Polebitski, A., Brown, C. and Letcher, B. H., Toward\na statistical framework to quantify the uncertainties of hydrologic\nresponse under climate change. Water Resour. Res., 2012, 48, W11525,\ndoi:10.1029/2011WR011318.\n[27] Peterson, T. C. and Vose, R. S., An overview of the Global Historical\nClimatology Network temperature database. Bull. Am. Meteorol. Soc.,\n1997, 78, 2837-2849.\n[28] Mitchell, T. D. and Jones, P. D., An improved method of constructing a\ndatabase of monthly climate observations and associated high-resolution\ngrids. Int. J. Climatol., 2005, 25, 693-712.\n[29] Kripalani, R. H., Oh J. H., Kulkarni, A., Sabade, S. S., and Chaudhari,\nH. S., South Asian summer monsoon precipitation variability: Coupled\nclimate model simulations and projections under IPCC AR4. Theor.\nAppl. Climatol., 2007, 90, 133\u2013159.\n[30] Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S.\nand Xavier, P. K., Increasing trend of extreme rain events over India in a\nwarming environment. Science, 2006, 314, 1442\u20131445.\n[31] Rajeevan, M., Bhate, J. and Jaiswal A. K., Analysis of variability and\ntrends of extreme rainfall events over India using 104 years of gridded\ndaily rainfall data. Geophys. Res. Lett., 2008, 35, L18707,\ndoi:10.1029/2008GL035143.\n[32] Ojha, R., Kumar, D. N., Sharma, A., and Mehrotra, R., Assessing Severe\nDrought and Wet Events over India in a Future Climate Using a Nested\nBias-Correction Approach. J. Hydrol. Engg., 2013, 18, 760-772.\n[33] Gosain, A. K., Sandhya, R., Srinivasan, R. and Gopal R., N., Climate\nChange Impact Assessment of water resources of India. Curr. Sci., 2011,\n101, 356-371.\n[34] Hughes, J., Guttorpi, P. and Charles, S., A non-homogeneous hidden\nMarkov model for precipitation occurrence. Appl. Stat., 1999, 48, 15-30.\n[35] Prudhomme, C., Reynard, N. and Crooks, S., Downscaling of global\nclimate models for flood frequency analysis: where are we now? Hydrol.\nProcess., 2002, 16, 1137-1150.\n[36] Brands, S., Herrera, S., Fern\u00e1ndez, J. and Guti\u00e9rrez, J. M., How well do\nCMIP5 Earth System Models simulate present climate conditions in\nEurope and Africa? Clim. Dynam., 2013, 41, 803-817.\n[37] Taylor, K. E., Stouffer, R. J. and Meehl, G. A., An overview of CMIP5\nand the experiment design. Bull. Am. Meteorol. Soc., 2012, 93, 485\u2013498.\n[38] Ghosh, S., and Mujumdar, P. P., Climate change impact assessment:\nUncertainty modeling with imprecise probability. J. Geophys. Res.,\n2009, 114, D18113, doi:10.1029/2008JD011648.\n[39] Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S.\nK., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T.,\nMeehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J.,\nStouffer, R. J., Thomson, A. M., Weyant, J. P. and Wilbanks, T. J., The\nnext generation of scenarios for climate change research and assessment.\nNature, 2010, 463, 747\u2013756.\n[40] Jones, R. G., Murphy, J. M., Noguer, M. and Keen, A. B., Simulation of\nclimate change over Europe using a nested regional-climate model. II:\nComparison of driving and regional model responses to a doubling of\ncarbon dioxide. Q. J. R. Meteorol. Soc., 1997, 123, 265-292.\n[41] Hewitson, B.C. and Crane R.G., Climate downscaling: techniques and\napplication. Clim. Res., 1996, 7, 85-95.\n[42] Giorgi, F. and Mearns, L., Approaches to the simulation of regional\nclimate change: A review. Rev. Geophys., 1991, 29, 191-216.\n[43] Giorgi, F. and Mearns, L., Introduction to special section: Regional\nclimate modelling revisited. J. Geophys. Res., 1999, 104, 6335-6352.\n[44] von Storch, H., Langenberg, H. and Feser, F., A spectral nudging\ntechnique for dynamical downscaling purposes. Mon. Wea. Rev., 2000,\n128, 3664-3673.\n[45] Christensen, J. H. and Christensen, O. B., A summary of the\nPRUDENCE model projections of changes in European climate by the\nend of this century. Clim. Change, 2007, 81, 7-30.\n[46] Buonomo, E., Jones, R., Huntingford, C. and Hannaford, J., On the\nrobustness of changes in extreme precipitation over Europe from two\nhigh resolution climate change simulations. Quarterly Q. J. R. Meteorol.\nSoc., 2007, 133, 65\u201381.\n[47] Fowler, H. J., Blenkinsop, S. and Tebaldi, C., Linking climate change\nmodelling to impacts studies: recent advances in downscaling techniques\nfor hydrological modelling. Int. J. Climatol., 2007, 27, 1547-1578.\n[48] Rauscher, S. A., Coppola, E., Piani, C. and Giorgi, F., Resolution effects\non regional climate model simulations of seasonal precipitation over\nEurope. Clim. Dynam., 2010, 35, 685- 711.\n[49] Maraun, D., Rust, H. W. and Osborn, T. J., The annual cycle of heavy\nprecipitation across the United Kingdom: a model based on extreme\nvalue statistics. Int. J. Climatol., 2010, 29, 1731-1744.\n[50] Durman, C. F., Gregory, J. M., Hassell, D. C., Jones, R. G. and Murphy,\nJ. M., A comparison of extreme European daily precipitation simulated\nby a global and a regional climate model for present and future climates.\nQ. J. R. Meteorol. Soc., 2001, 127, 1005-1015.\n[51] Mujumdar, P. P. and Kumar, D. N., Floods in a changing Climate,\nHydrological Modeling, Cambridge University press, 2012.\n[52] Frei, C., Scholl, R., Fukutome, S., Schmidli, J. and Vidale, P. L., Future\nchange of precipitation extremes in Europe: Intercomparison of\nscenarios from regional climate models. J. Geophys. Res., 111, D06105,\ndoi:10.1029/2005JD005965.\n[53] Christensen, J., Raisanen, J., Iversen, T., Bjorge, D., Christensen, O. and\nRummukainen, M., A synthesis of regional climate change simulations.\nA Scandinavian perspective. Geophys. Res. Lett., 2001, 28, 1003\u20131006.\n[54] Jenkins, G., Murphy, J., Sexton, D., Lowe, J., Jones, P. and Kilsbu, C.,\nUKCP09 Briefing report. UK Climate projections. 2009, Exeter, UK,\nMet Office Hadley Centre.\n[55] Lenderink, G. and Van Meijgaard, E., Increase in hourly precipitation\nextremes beyond expectations from temperature changes. Nature\nGeosci., 2008, 1, 511-514.\n[56] Fowler, H. J. and Ekstrom, M., Multi-model ensemble estimates of\nclimate change impacts on UK seasonal precipitation extremes. Int. J.\nClimatol., 2009, 29, 385-416.\n[57] Bachner, S., Kapala, A. and Simmer, C., Evaluation of daily\nprecipitation characteristics in the CLM and their sensitivity to\nparameterizations. Meteorol. Z., 2008, 17, 407-420.\n[58] Murphy, J. M., Sexton, D. M. H., Jenkins, G. J., Booth, B. B. B., Brown,\nC. C., Clark, R. T., Collins, M., Harris, G. R., Kendon, E. J., Betts, R.\nA., Brown, S. J., Boorman, P., Howard, T. P., Humphrey, K. A.,\nMcCarthy, M. P., McDonald, R. E., Stephens, A., Wallace, C., Warren,\nR., Wilby, R. and Wood, R. A., Climate change projections. UK Climate\nprojections, 2009. Exeter, UK.\n[59] Chen, C. T. and Knutson, T., On the verification and comparison of\nextreme rainfall indices from climate models. J. Clim., 2008, 21, 1605-\n1621.\n[60] Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P., Mearns,\nL. O., Guidelines for Use of Climate Scenarios Developed from\nStatistical Downscaling Methods. IPCC Task Group on Data and\nScenario Support for Impact and Climate Analysis (TGICA), 2004,\nhttp://ipcc-ddc.cru.uea.ac.uk/gu-idelines/ StatDown_Guide.pdf\n[61] Wilby, R. L., Hassan, H. and Hanaki, K., Statistical downscaling of\nhydrometeorological variables using general circulation model output, J.\nHydrol., 1998, 205, 1\u201319.\n[62] Xu, C., From GCMs to river flow: a review of downscaling methods and\nhydrologic modelling approaches. Prog. Phys. Geog., 1999, 23, 229-\n249.\n[63] Wilby, R. L. and Wigley, T. M. L., Downscaling general circulation\nmodel output: a review of methods and limitations. Prog. Phys. Geog.,\n1997, 21, 530-548.\n[64] Zorita, E. and von Storch, H., Analog method as a simple statistical\ndownscaling technique: comparison with more complicated methods. J.\nClim.,1999, 12, 2474-2489.\n[65] Chandler, R. E. and Wheater, H. S., Analysis of rainfall variability using\ngeneralized linear models: A case study from the west of Ireland. Water\nResour. Res., 2002, 38, 1192.\n[66] Mehrotra, R., and Sharma, A., Development and application of a\nmultisite rainfall stochastic downscaling framework for climate change\nimpact assessment. Water Resour. Res., 2010, 46, W07526,\ndoi:10.1029/2009WR008423.\n[67] Wilby, R. L., Dawson, C. W. and Barrow, E. M., SDSM - a decision\nsupport tool for the assessment of regional climate change impacts.\nEnviron. Modell. Softw., 2002, 17, 147-159.\n[68] Chandler, R. E., GLIMCLIM: Generalized Linear Modelling for Daily\nClimate Time Series (Software and User guide). Research Report\nNo.227, Department of Statistical Science, University College London.\n[69] Kilsby, C. G., Jones, P. D., Burton, A., Ford A. C., Fowler, H. J.,\nHarpham, C., James, P., Smith, A. and Wilby R. L., A daily weather\ngenerator for use in climate change studies. Environ. Modell. Softw.,\n2007, 22, 1705\u20131719.\n[70] Wilks, D. S., Multi-site downscaling of daily precipitation with a\nstochastic weather generator. Clim. Res., 1999, 11, 125- 136.\n[71] Korawan, A., Chaleeraktrakoon, C. and Nguyen, V., Modeling and\nanalysis of rainfall processes in the context of climate change for\nMekong, Chi and Mun River Basins (Thailand). J. Hydro-Env. Res.,\n2013, 7, 2-17.\n[72] Kannan, S. and Ghosh, S., Prediction of daily rainfall state in a river\nbasin using statistical downscaling from GCM output. Stoch. Environ.\nRes. Risk Assess., 2011, 25,457-474.\n[73] Ghosh, S., SVM\u2010PGSL coupled approach for statistical downscaling to\npredict rainfall from GCM output. J. Geophys. Res., 2010, 115, D22102,\ndoi:10.1029/2009JD013548.\n[74] Kannan, S. and Ghosh, S., A nonparametric Kernel regression model for\ndownscaling multisite daily precipitation in the Mahanadi basin, Water\nResour. Res., 2013, 49, 1360-1385.\n[75] Salvi K., Kannan, S. and Ghosh, S., High resolution multisite daily\nrainfall projections in India using statistical downscaling for climate\nchange impact assessment. J. Geophys. Res., 2013, 118, 3557-3578.\n[76] Jha, S. K., Mariethoz, G., Evans, J. P. and McCabe, M. F.,\nDemonstration of a geostatistical approach to physically consistent\ndownscaling of climate modeling simulations. Water Resour. Res., 49,\n245-259.\n[77] United Nations Framework Convention on Climate Change (UNFCCC).\n1992. United Nations Framework Convention on Climate Change: Text.\nGeneva: UNEP/WMO."]}