Geochemistry Of Tektites From Maoming Of Guandong Province, China

We measured the major and trace element contents and Rb-Sr isotopic compositions of 12 tektites from the Maoming area, Guandong province (south China). All the samples studied are splash-form tektites which show pitted or grooved surfaces with schlieren structures on some surfaces. The trace element...

Full description

Bibliographic Details
Main Authors: Yung-Tan Lee, Huang, Ren-Yi, Jyh-Yi Shih, Meng-Lung Lin, Yen-Tsui Hu, Hsiao-Ling Yu, Chih-Cheng Chen
Format: Text
Language:English
Published: Zenodo 2011
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.1074464
https://zenodo.org/record/1074464
Description
Summary:We measured the major and trace element contents and Rb-Sr isotopic compositions of 12 tektites from the Maoming area, Guandong province (south China). All the samples studied are splash-form tektites which show pitted or grooved surfaces with schlieren structures on some surfaces. The trace element ratios Ba/Rb (avg. 4.33), Th/Sm (avg. 2.31), Sm/Sc (avg. 0.44), Th/Sc (avg. 1.01) , La/Sc (avg. 2.86), Th/U (avg. 7.47), Zr/Hf (avg. 46.01) and the rare earth elements (REE) contents of tektites of this study are similar to the average upper continental crust. From the chemical composition, it is suggested that tektites in this study are derived from similar parental terrestrial sedimentary deposit which may be related to post-Archean upper crustal rocks. The tektites from the Maoming area have high positive εSr(0) values-ranging from 176.9~190.5 which indicate that the parental material for these tektites have similar Sr isotopic compositions to old terrestrial sedimentary rocks and they were not dominantly derived from recent young sediments (such as soil or loess). The Sr isotopic data obtained by the present study support the conclusion proposed by Blum et al. (1992)[1] that the depositional age of sedimentary target materials is close to 170Ma (Jurassic). Mixing calculations based on the model proposed by Ho and Chen (1996)[2] for various amounts and combinations of target rocks indicate that the best fit for tektites from the Maoming area is a mixture of 40% shale, 30% greywacke, 30% quartzite. : {"references": ["1] J. D. Blum , D. A. Papanastassiou, C. Koeberl, and G. J. Wasserburg, \"Nd\nand Sr isotopic study of Australasian tektites:New constraints on the\nprovenance and age of target material\", Geochim. Cosmochim. Acta, 56,\npp. 483-492, 1992.", "K. S. Ho, and J. C. Chen, \"Geochemistry and origin of tektites from the\npenglei area, Hainan province, southern China.\" J. of Southeast Asian\nEarth Sciences Vol. 13, No. 1, pp. 61-72, 1996.", "A. Montanari, and C. Koeberl, \"Impact Stratigraphy: The Italian Record.\"\nSpringer, Heideberg, 2000.", "L. Folco, B. P. Glass, M. D-Orazio, P. Rochette, \"A common\nvolatilization trend in Transantarctic Mountain and Australasian\nmicrotektites: Implications for their formation model and parent crater\nlocation.\" Earth and Planetary Science Letters 293, pp.135-139, 2010.", "F. Moynier, P. Beck, F. Jourdan, Q. Z. Yin, U. Reimold, C. Koeberl,\n\"Isotopic fractionation of zinc in tektites.\" Earth and Planetary Science\nLetters 277, pp. 482-489, 2009.", "B. P. Glass, \"Tektites and microtektites: key facts and inferences.\"\nTectonophysics 171, pp. 393-404, 1990.", "C. Koeberl, \"Tektite origin by hypervelocity asteroidal or cometary\nimpact:Target rocks, source craters, and mechanisms.\" Geol. Soc. Am.\nSpecial Paper 293, pp. 133-151, 1994.", "A. Montanari, and C. Koeberl, \"Impact Stratigraphy: The Italian Record.\"\nSpringer, Heideberg, 2000.", "P. Ma, K. Aggrey, C. Tonzola, C. Schnabel, P. De Nicola, G. F. Herzog, J.\nT. Wasson, B. P. Glass, L. Brown, F. Tera, R. Middleton and J. Klein,\n\"Beryllium-10 in Australasian tektites: constraints on the locateon of the\nsource crater.\" Geochim. Cosmochim. Acta 68, pp. 3883-3896, 2004.\n[10] F. Moynier, C. Koeberl, P. Beck, F. Jourdan, P. Telouk, \"Isotopic\nfractionation of Cu in tektites.\" Geochimica et Cosmochimica Acta 74,\npp. 799-807, 2010.\n[11] Y. T. Lee, J. C. Chen, K. S. Ho and W. S. Juang, \"Geochemical studies of\ntektites from East Asia.\" Geochem. Jour. 38, pp. 1-17, 2004.\n[12] B. P. Glass, H. Huber and C. Koeberl \"Geochemistry of Cenozoic\nmicrotektites and clinopyroxene-bearing sphereules.\" Geochim.\nCosmochim. Acta 68, pp. 3971-4006, 2004.\n[13] B. P. Glass and J. E. Pizzuto, \"Geographical variation in Australasian\nmicrotektite concentrations: Implications concerning the location and\nsize of the source crater.\" J. Geophys. Res. 99, pp. 19075-19081, 1994.\n[14] C. Koeberl, \"Geochemistry and origin of Muong Nong-type tektites.\"\nGeochim. Cosmochim. Acta 56, pp. 1033-1064, 1992.\n[15] C. Koeberl, \"Geochemistry and origin of Muong Nong-type tektites.\"\nGeochim. Cosmochim. Acta 56, pp. 1033-1064, 1992.\n[16] C. Koeberl, F. Kluger and W. Kiesl, \"Geochemistry of Muong Nong-type\ntektites V: unusual ferric/ferrous ratio.\" Meteoritics 19, pp. 253-254,\n1984.\n[17] P. H. Stauffer, \"Anatomy of the Australasian tektite strewn field and the\nprobable site of its source crater.\" In Proceedings of the 3rd Regional\nConference on Geology and Mineral Resources of Southeast Asia,\nBangkok, Thailand. pp. 285-289, 1978.\n[18] J. B. Hartung and A. R. Rivolo, \"A possible source in Cambodia for\nAustralasian tektites.\" Meteoritics 14, pp. 153-159, 1979.\n[19] R. A. Dunlap and A. D. E. Sibley, \"A Mossbauer effect study of Fe-site\noccupancy in Australasian tektites.\" J. Non-Cryst. Solids 337,pp.36-41,\n2004.\n[20] L. Folco, P. Rochette, N. Perchiazzi, M. D-Orazio, M. Laurenzi, M.\nTiepolo, \"Microtektites from northern Victoria Land Transantarctic\nMountains.\" Geology 36, pp. 291-294, 2008.\n[21] L. Folco, M. D-Orazio, M. Tiepolo, S. Tonarini, L. Ottolini, N. Perchiazzi,\nP. Rochette, B. P. Glass, \"Transantarctic Mountain microtektites:\ngeochemical affinity with Australasian microtektites.\" Geochim.\nCosmochim. Acta 73, pp. 3694-3722, 2009.\n[22] B. P. Glass, C. Koeberl, \"Australasian microtektites and associated\nimpact ejecta in the South China Sea and the Middle Pleistocene\nsupereruption of Toba.\" Meteorit. Planet. Sci. 41, pp. 305-326, 2006.\n[23] S. M. Mclennan, and S. R. Taylor, \"Th and U in sedimentary rocks:\ncrustal evolution and sedimentary recyling.\" Nature 285, pp. 621-624,\n1985.\n[24] S. M. Mclennan, and S. R. Taylor, \"Th and U in sedimentary rocks:\ncrustal evolution and sedimentary recyling.\" Nature 285, pp. 621-624,\n1985.\n[25] G. Schmidt, L. Zhoi, J. T. Wasson, \"Iridium anomaly associated with the\nAustralian tektite-producing impact:Masses of the impactor and of the\nAustralian tektites.\" Geochim. Cosmochim. Acta 57,pp. 4851-4859,\n1993.\n[26] T. Sato, \"Regional geology and stratigraphy : Southeast Asia and Japan.\"\nIn The Jurassic of the Circum-Pacific(Edited by Westermann G. E. G.),\npp. 194-213. Cambridge University Press, 1992.\n[27] K. C. Condie, \"Chemical composition and evolution of the upper\ncontinental crust: Contrasting results from surface samples and shales.\"\nChem. Geol. 104, pp. 1-37, 1993."]}