Biokinetics Of Coping Mechanism Of Freshwater Tilapia Following Exposure To Waterborne And Dietary Copper

The purpose of this study was to understand the main sources of copper (Cu) accumulation in target organs of tilapia (Oreochromis mossambicus) and to investigate how the organism mediate the process of Cu accumulation under prolonged conditions. By measuring both dietary and waterborne Cu accumulati...

Full description

Bibliographic Details
Main Author: Jeng-Wei Tsai
Format: Text
Language:English
Published: Zenodo 2012
Subjects:
Online Access:https://dx.doi.org/10.5281/zenodo.1061323
https://zenodo.org/record/1061323
Description
Summary:The purpose of this study was to understand the main sources of copper (Cu) accumulation in target organs of tilapia (Oreochromis mossambicus) and to investigate how the organism mediate the process of Cu accumulation under prolonged conditions. By measuring both dietary and waterborne Cu accumulation and total concentrations in tilapia with biokinetic modeling approach, we were able to clarify the biokinetic coping mechanisms for the long term Cu accumulation. This study showed that water and food are both the major source of Cu for the muscle and liver of tilapia. This implied that control the Cu concentration in these two routes will be correlated to the Cu bioavailability for tilapia. We found that exposure duration and level of waterborne Cu drove the Cu accumulation in tilapia. The ability for Cu biouptake and depuration in organs of tilapia were actively mediated under prolonged exposure conditions. Generally, the uptake rate, depuration rate and net bioaccumulation ability in all selected organs decreased with the increasing level of waterborne Cu and extension of exposure duration.Muscle tissues accounted for over 50%of the total accumulated Cu and played a key role in buffering the Cu burden in the initial period of exposure, alternatively, the liver acted a more important role in the storage of Cu with the extension of exposures. We concluded that assumption of the constant biokinetic rates could lead to incorrect predictions with overestimating the long-term Cu accumulation in ecotoxicological risk assessments. : {"references": ["C. R. Janssen, D. G. Heijerick, K. A. C. De Schamphelaere, H. E. Allen,\nEnvironmental risk assessment of metals: tools for incorporating\nbioavailability. Environ Int 28:793-800. 2003.", "B. I. Escher, J. L. M. Hermens, Internal exposure: linking bioavailability\nto effects. Environ Sci Technol 38:455A-462A. 2004.", "J.W. Tsai,W. Y. Chen, Y. R. Ju, C. M. Liao, Bioavailability links mode\nof action can improve the long-term field risk assessment for tilapia\nexposed to arsenic. Environ Int 35:727-736. 2009.", "M. H. Grosell, C. Hogstrand, C. M. Wood, Cu uptake and turnover in\nboth Cu acclimated and non-acclimated rainbow trout (Oncorhynchus\nmykiss). Aquat Toxicol 38:257-276. (1997)", "P. S. Rainbow, Trace metal concentrations in aquatic invertebrates: why\nor so what? Environ Pollut 120:497-507. 2002.", "D. J. Cain, S. N. Luoma, W. G. Wallace, Linking metal bioaccumulation\nof aquatic insects to their distribution patterns in a mining-impacted river.\nEnviron Toxicol Chem 23:1463-1473. 2004.", "W. W. Green, R. S. Mirza,C. M. Wood, G. G. Pyle, Copper binding\ndynamics and olfactory impairment in fathead minnows (Pimephale\npromelas). Environ Sci Technol 44:1431-1437. (2010)", "J. C. McGeer, K. V. Brix, J .M. Skeaff, D. K. DeForest, S. I. Brigham, W.\nJ. Adams, A. Green, Inverse relationship between bioconcentration factor\nand exposure concentration for metals: implications for hazard\nassessment of metals in the aquatic environment. Environ Toxicol Chem\n22:1017-1037. 2003.", "C. M. Liao, B. C. Chen, S. Singh, M. C. Lin, C. W. Liu, B. C. Han,\nAcute toxicity and bioaccumulation of arsenic in tilapia (Oreochromis\nmossambicus) from a blackfoot disease area in Taiwan. Environ Toxicol\n18:252-259. 2003.\n[10] C. M. Wood, M. Grosell, M. D. McDonald, R. C. Playle, P. J. Walsh,\nEffects of waterborne silver in a marine teleost, the gulf toadfish\n(Opsanus beta): Effects of feeding and chronic exposure on\nbioaccumulation and physiological responses. Aquat Toxicol 99:138-148.\n2010.\n[11] C. Kamunde, M. Grosell, D. Higgs, C. M. Wood, Copper, metabolism\nin actively growing rainbow trout (Oncorhynchus mykiss) interactions\nbetween dietary and waterborne copper uptake. J Exp Biol 205:279-290.\n2002.\n[12] M. Grosell, I. Boetius, H. J. M. Hansen, P. Rosenkilde, Influence of\npreexposure to sublethal levels of copper on 64Cu uptake and distribution\namong tissues of the European eel (Anguilla anguilla). Comp Biochem\nPhysiol C 114:229-235. 1996.\n[13] F. Dang, H. Zhong, W. X. Wang, Copper uptake kinetics and regulation\nin a marine fish after waterborne copper Acclimation. Aquat Toxicol\n94:238-244. 2009.\n[14] L. D. Kraemer, P. G. C. Campbell, L . Hare, A field study examining\nmetal elimination kinetics in juvenile yellow perch (Perca flavescens).\nAquat Toxicol 75:108-126. 2005.\n[15] J. C. McGeer, S. Nadella, D. H. Alsop, L. Hollis, L. N. Taylor, D. G.\nMcDonald, C.M. Wood , Influence of acclimation and cross-acclimation\nof metals on acute Cd toxicity and Cd uptake and distribution in rainbow\ntrout (Oncorhynchus mykiss). Aquat Toxicol 84(2):190-197. 2007.\n[16] A. Suhendrayatna Ohki, T. Nakajima, S. Maeda, Studies on the\naccumulation and transformation of arsenic in fresh organisms II.\nAccumulation and transformation of arsenic compounds by Tilapia\nmossambica. Chemosphere 46:325-331. 2002.\n[17] C. M. Liao, J. W. Tsai, M. P. Ling, H. M. Liang, Y. H. Chou, P. T.\nYang, Organ-specific toxicokinetics and dose-response of arsenic in\ntilapia Oreochromis mossambicus. Arch Environ Contam Toxicol\n47:502-510. 2004.\n[18] S. M. Wu, H. R. Ding, L. Y. Lin, Y. S. Lin, Juvenile tilapia\n(Oreochromis mossambicus) strive to maintain physiological functions\nafter waterborne copper exposure. Arch Environ Contam Toxicol\n54(3):482-492. 2008.\n[19] Y. Iger, R. A. C. Lock, J. C. A. van der Meij, S. E. Wendelaar Bonga,\nEffects of water-borne cadmium on the skin of the common carp\n(Cyprinus carpio). Arch Environ Contam Toxicol 26:342-350. 1994.\n[20] S.M. Wu, K. J. Jong, S. Y. Kuo, Effects of copper sulfate on ion balance\nand growth in tilapia larvae (Oreochromis mossambicus). Arch Environ\nContam Toxicol 45(3):357-363. 2003.\n[21] Environmental Protection Administration ROC (Taiwan).\nhttp://ivy5.epa.gov.tw/epalaw/index.aspx. 2001.\n[22] S. N. Luoma, P. S. Rainbow, Why is metal bioaccumulation so variable?\nBiodynamics as a unifying concept. Environ Sci Technol 39:1921-1931.\n2005.\n[23] J. W. Tsai, C. M. Liao, V. H. C. Liao, A biologically based damage\nassessment model to enhance aquacultural water quality management.\nAquaculture 251(2-4):280-294. (2006)\n[24] L. D. Kraemer, P. G. C. Campbell, L. Hare, Modeling cadmium\naccumulation in indigenous yellow perch (Perca flavescens). Can J Fish\nAquat Sci 65:1623-1634. 2008.\n[25] F. Dang, W. X. Wang, Subcellular controls of mercury trophic transfer to\na marine fish. Aquat Toxicol 99:500-506. 2010.\n[26] L. D. Kraemer, P. G. C. Campbell, L. Hare, J. C. Auclair, A field study\nexamining the relative importance of food and water as sources of\ncadmium for juvenile yellow perch (Perca flavescens). Can J Fish Aquat\nSci 63(3):549-557. 2006.\n[27] J. R. Erickson, D. R. Mount, T. L. Highland, J. R. Hockett, E. N. Leonard,\nV. R. Mattson, T. D. Dawson, K. G. Lott, Effects of copper, cadmium,\nlead, and arsenic in a live diet on juvenile fish growth. Can J Fish Aquat\nSci 67(11):1816-1826. 2010.\n[28] W. G. Wallace, G. R. Lopez, Relationship between subcellular cadmium\ndistribution in prey and cadmium trophic transfer to a predator. Estuar\nCoast 19:923-930. 1996.\n[29] W. G. Wallace, G. R. Lopez, J. S. Levinton, Cadmium resistance in an\noligochaete and its effect on cadmium trophic transfer to an omnivorous\nshrimp. Mar Ecol Prog Ser 172:225-237. 1998.\n[30] M. C. Newman,M. A. Unger, Fundamentals of Ecotoxicology, second ed.\nLewis Publishers, CRC Press, Boca Raton, FL. 2003\n[31] S. Copper, L. Hare, P. G. C. Campbell, Modeling cadmium uptake from\nwater and food by the freshwater bivalve Pyganodon grandis. Can J Fish\nAquat Sci 67(11):1874-1888. 2010.\n[32] P. Carriquiriborde, A. E. Ronco, Distinctive accumulation patterns of\nCd(II), Cu(II), and Cr(VI) in tissue of the South American teleost, pejerrey\n(Odontesthes bonariensis). Aquat Toxicol 86:313-322. (2008)\n[33] J. C. McGeer, C. Szebedinszky, D. G. McDonald, C. M. Wood, Effects\nof chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout\n2: tissue specific metal accumulation. Aquat Toxicol 50:245-256. 2000.\n[34] L. D. Kraemer, P. G. C. Campbell, L. Hare, Dynamics of Cd, Cu and Zn\naccumulation in organs and sub-cellular fractions in field transplanted\njuvenile yellow perch (Perca flavescens). Environ Pollut 138:324-337.\n2005.\n[35] S. Subathra, R. Karuppasamy, Bioaccumulation and depuration pattern\nof copper in different tissues of Mystus vittatus, related to various size\ngroups. Arch Environ Contam Toxicol 54:236-244. 2008.\n[36] P. Couture, J. W. Rajotte, Morphometric and metabolic indicators of\nmetal stress in wild yellow perch (Perca flaveseens) from Sudbury,\nOntario: A review. J Environ Monitor 5:216-221. 2003.\n[37] S. M. G. J. Pelgrom, R. A. C. Lock, P. H. M. Balm, S. E. Wendelaar\nBonga, Integrated physiological response of tilapia, Oreochromis\nmossambicus, to sublethal copper exposure. Aquat Toxicol 32:303-320.\n1995.\n[38] C. Hogstrand,M. Grosell, C.M.Wood, H. Hansen, Internal redistribution\nof radi olabelled silver among tissues of rainbow trout (Oncorhynchus\nmykiss) and European eel (Anguilla anguilla): the influence of silver\nspeciation. Aquat Toxicol 63:139-157. 2003.\n[39] P. F. Landrum, Bioavailability and toxicokinetics of polycyclic aromatic\nhydrocarbons sorbed to sediments for the amphipod Pontoporeia hoyi.\nEnviron Sci Technol 23:588-595. 1989.\n[40] C. P. Higgins , Z. J. Paesani , T. E. Chalew , R. U. Halden,\nBioaccumulation of triclocarban in Lumbriculus variegatus. Environ\nToxicol Chem 28:2580-2586. 2009.\n[41] G. De Boeck, M. Eyckmans, I. Lardon, R. Bobbaers, A. K. Sinha, R.\nBlust, Metal accumulation and metallothionein induction in the spotted\ndogfish Scyliorhinus canicula. Comp Biochem Physiol A 155:503-508.\n2010."]}