Location Location Location: Survival of Antarctic biota requires the best real-estate ...

The origin of terrestrial biota in Antarctica has been debated since the discovery of springtails on the first historic voyages to the southern continent more than 120 years ago. A plausible explanation for the long-term persistence of life requiring ice-free land on continental Antarctica has, howe...

Full description

Bibliographic Details
Main Authors: Stevens, Mark, Mackintosh, Andrew
Format: Dataset
Language:English
Published: Dryad 2022
Subjects:
Online Access:https://dx.doi.org/10.5061/dryad.zw3r228bx
https://datadryad.org/stash/dataset/doi:10.5061/dryad.zw3r228bx
Description
Summary:The origin of terrestrial biota in Antarctica has been debated since the discovery of springtails on the first historic voyages to the southern continent more than 120 years ago. A plausible explanation for the long-term persistence of life requiring ice-free land on continental Antarctica has, however, remained elusive. The default glacial eradication scenario has dominated because hypotheses to date have failed to provide a mechanism for their widespread survival on the continent, particularly through the Last Glacial Maximum when geological evidence demonstrates that the ice sheet was more extensive than present. Here, we provide support for the alternative nunatak refuge hypothesis – that ice-free terrain with sufficient relief above the ice sheet provided refuges and was a source for terrestrial biota found today. This hypothesis is supported here by an increased understanding from the combination of biological and geological evidence, and we outline a mechanism for these refuges during successive ... : Data collection. We focussed on ice-free terrain represented by 15 currently recognized Antarctic Conservation Biodiversity Regions (ACBRs); we do not include South Orkney Islands. We compiled all published occurrence records for all springtail species considered to be endemic or native from these 15 ACBRs and from our own unpublished records. We obtained the ten geothermal sites used in the analyses by Fraser et al. from their Table S6. We compiled the geochronological data from all known cosmogenic-nuclide data from Antarctica (https://www.ice-d.org/) and from publications that were used to scrutinise the datasets. Cosmogenic dating is uniquely suited to Antarctic environments, however, there are problematic samples and locations. We include a selection of cosmogenic datasets to represent sites that clearly (or potentially) delineate Last Glacial Maximum surface elevations, and reject datasets where results are inconclusive due to isotope inheritance or incomplete or inconclusive results. From the included ...