Allee effects and the allee-effect zone in northwest atlantic cod ...

According to the theory of compensatory dynamics, depleted populations should recover when the threat responsible for their decline is removed because per capita population growth is assumed to be highest when populations are at their smallest viable sizes. Yet, many seriously depleted fish populati...

Full description

Bibliographic Details
Main Authors: Perälä, Tommi, Kuparinen, Anna, Hutchings, Jeffrey
Format: Dataset
Language:English
Published: Dryad 2021
Subjects:
Online Access:https://dx.doi.org/10.5061/dryad.r4xgxd2dg
https://datadryad.org/stash/dataset/doi:10.5061/dryad.r4xgxd2dg
Description
Summary:According to the theory of compensatory dynamics, depleted populations should recover when the threat responsible for their decline is removed because per capita population growth is assumed to be highest when populations are at their smallest viable sizes. Yet, many seriously depleted fish populations have failed to recover despite threat mitigation. Atlantic cod (Gadus morhua) off Newfoundland despite thirty years of dramatically reduced fishing mortality and numerous fishery closures has not recovered suggesting that drivers other than fishing regulate the growth of collapsed fish populations, inhibiting or preventing their recovery. Here, using Bayesian inference, we show strong evidence of Allee effects in a south Newfoundland cod population, based on data on recruitment and spawning stock biomass. We infer the Allee-effect threshold, below which recovery is impaired. We demonstrate the necessity of data at low population sizes to make inferences about the nature of low-abundance dynamics. Our work ... : The stock and recruitment data was extracted from 2021 Stock Assessment of NAFO Subdivision 3Ps cod. ...