Climate-driven shifts in kelp forest composition reduce carbon sequestration potential ...

The potential contribution of kelp forests to blue carbon sinks is currently of great interest but interspecific variance has received no attention. In the temperate Northeast Atlantic, kelp forest composition is changing due to climate-driven poleward range shifts of cold temperate Laminaria digita...

Full description

Bibliographic Details
Main Authors: Wright, Luka Seamus, Pessarrodona, Albert, Foggo, Andy
Format: Dataset
Language:English
Published: Dryad 2022
Subjects:
CN
Online Access:https://dx.doi.org/10.5061/dryad.m905qfv40
https://datadryad.org/stash/dataset/doi:10.5061/dryad.m905qfv40
Description
Summary:The potential contribution of kelp forests to blue carbon sinks is currently of great interest but interspecific variance has received no attention. In the temperate Northeast Atlantic, kelp forest composition is changing due to climate-driven poleward range shifts of cold temperate Laminaria digitata and L. hyperborea and warm temperate L. ochroleuca. To understand how this might affect the carbon sequestration potential of this ecosystem, we quantified interspecific differences in carbon export and decomposition alongside changes in detrital photosynthesis and biochemistry. We found that while warm temperate kelp exports up to 71% more carbon per plant, it decomposes up to 155% faster than its boreal congeners. Elemental stoichiometry and polyphenolic content cannot fully explain faster carbon turnover, which may be attributable to contrasting tissue toughness or unknown biochemical and structural defences. Faster decomposition causes the detrital photosynthetic apparatus of L. ochroleuca to be overwhelmed ... : Data are deposited as CSV files and can be opened with any data software. The code accompanying these data is deposited at github.com/lukaseamus/CSP alongside further usage information. We place no restrictions on data usage. ...