Data from: Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis ...

Microbes growing at subzero temperatures encounter numerous growth constraints. However, fungi that inhabit cold environments can grow and decompose organic compounds under subzero temperatures. Thus, understanding the cold-adaptation strategies of fungi under extreme environments is critical for el...

Full description

Bibliographic Details
Main Author: Tsuji, Masaharu
Format: Dataset
Language:English
Published: Dryad 2016
Subjects:
Online Access:https://dx.doi.org/10.5061/dryad.h5v25
https://datadryad.org/stash/dataset/doi:10.5061/dryad.h5v25
Description
Summary:Microbes growing at subzero temperatures encounter numerous growth constraints. However, fungi that inhabit cold environments can grow and decompose organic compounds under subzero temperatures. Thus, understanding the cold-adaptation strategies of fungi under extreme environments is critical for elucidating polar-region ecosystems. Here, I report that two strains of the Antarctic basidiomycetous yeast Mrakia blollopis exhibited distinct growth characteristics under subzero conditions: SK-4 grew efficiently, whereas TKG1-2 did not. I analysed the metabolite responses elicited by cold stress in these two M. blollopis strains by using capillary electrophoresis–time-of-flight mass spectrometry. M. blollopis SK-4, which grew well under subzero temperatures, accumulated high levels of TCA-cycle metabolites, lactic acid, aromatic amino acids and polyamines in response to cold shock. Polyamines are recognized to function in cell-growth and developmental processes, and aromatic amino acids are also known to improve ... : Concentration of targeted metabolites data_M. TsujiIn the CE-TOFMS analysis, 219 metabolites (115 cationic, 104 anionic) were detected. Moreover, 88 metabolites, which included amino acids, organic acids, sugar phosphates, and nucleotides, were quantified using external standards and targeted metabolite analysis.MS data set_M. Tsuji.xlsx ...