Data from: Bacterial epibiont communities of panmictic Antarctic krill are spatially structured ...
Antarctic krill (Euphausia superba) are amongst the most abundant animals on Earth, with a circumpolar distribution in the Southern Ocean. Genetic and genomic studies have failed to detect any population structure for the species, suggesting a single panmictic population. However, the hyper-abundanc...
Main Authors: | , , , , , |
---|---|
Format: | Dataset |
Language: | English |
Published: |
Dryad
2021
|
Subjects: | |
Online Access: | https://dx.doi.org/10.5061/dryad.4mw6m908k https://datadryad.org/dataset/doi:10.5061/dryad.4mw6m908k |
Summary: | Antarctic krill (Euphausia superba) are amongst the most abundant animals on Earth, with a circumpolar distribution in the Southern Ocean. Genetic and genomic studies have failed to detect any population structure for the species, suggesting a single panmictic population. However, the hyper-abundance of krill slows the rate of genetic differentiation, masking potential underlying structure. Here we use high-throughput sequencing of bacterial 16S rRNA genes to show that krill bacterial epibiont communities exhibit spatial structuring, driven mainly by distance rather than environmental factors, especially for strongly krill-associated bacteria. Estimating the ecological processes driving bacterial community turnover indicated this was driven by bacterial dispersal limitation increasing with geographic distance. Furthermore, divergent epibiont communities generated from a single krill swarm split between aquarium tanks under near identical conditions suggests physical isolation in itself can cause ... : High-throughput DNA sequencing of bacterial 16S rRNA genes. See paper for more details. ... |
---|