Celebrating thirty years of virtual outcrops: status and perspectives ...

Thirty years ago, scientists from the Technical University of Denmark and University of Bergen published 3D outcrop acquisition and processing methods for large-scale vertical cliff sections in Greenland (Dueholm & Olsen, 1993), thus laying out a pathway to today’s state-of-the-art in high resol...

Full description

Bibliographic Details
Main Authors: Buckley, Simon J, Howell, John A, Naumann, Nicole, Ringdal, Kari, Vanbiervliet, Joris, Lewis, Conor, Chmielewska, Magda
Format: Text
Language:English
Published: Deutsche Geologische Gesellschaft - Geologische Vereinigung e.V. (DGGV) 2023
Subjects:
Online Access:https://dx.doi.org/10.48380/1agw-c920
https://www.dggv.de/e-publikationen/celebrating-thirty-years-of-virtual-outcrops-status-and-perspectives
Description
Summary:Thirty years ago, scientists from the Technical University of Denmark and University of Bergen published 3D outcrop acquisition and processing methods for large-scale vertical cliff sections in Greenland (Dueholm & Olsen, 1993), thus laying out a pathway to today’s state-of-the-art in high resolution virtual outcrop modelling. Although the photogrammetric methods employed were based on film cameras and early digital processing, the authors successfully created stereoscopic outcrop models that could be used for accurate measurement of cross sections, channel bodies, and derived parameters such as net-to-gross ratio. Fast forward to today, and virtual outcrop modelling has evolved rapidly, spanning early work using laser scanning, integration with hyperspectral imaging, and the full-circle return to photogrammetry. The latter has brought about a paradigm shift in field geoscience, driven by lightweight digital cameras, drone platforms, and powerful computing hardware combined with automated image matching ...