Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core ...

Reconstructions of atmospheric CO2 concentrations based on Antarctic ice cores1,2 reveal significant changes during the Holocene epoch, but the processes responsible for these changes in CO2 concentrations have not been unambiguously identified. Distinct characteristics in the carbon isotope signatu...

Full description

Bibliographic Details
Main Authors: Elsig, Joachim, Schmitt, Jochen, Leuenberger, Daiana, Schneider, Robert, Eyer, Marc, Leuenberger, Markus, Joos, Fortunat, Fischer, Hubert, Stocker, Thomas F.
Format: Text
Language:unknown
Published: Macmillan Journals Ltd. 2009
Subjects:
Online Access:https://dx.doi.org/10.48350/37500
https://boris.unibe.ch/37500/
Description
Summary:Reconstructions of atmospheric CO2 concentrations based on Antarctic ice cores1,2 reveal significant changes during the Holocene epoch, but the processes responsible for these changes in CO2 concentrations have not been unambiguously identified. Distinct characteristics in the carbon isotope signatures of the major carbon reservoirs (ocean, biosphere, sediments and atmosphere) constrain variations in the CO2 fluxes between those reservoirs. Here we present a highly resolved atmospheric δ13C record for the past 11,000 years from measurements on atmospheric CO2 trapped in an Antarctic ice core. From mass-balance inverse model calculations3,4 performed with a simplified carbon cycle model, we show that the decrease in atmospheric CO2 of about 5 parts per million by volume (p.p.m.v.). The increase in δ13C of about 0.25‰ during the early Holocene is most probably the result of a combination of carbon uptake of about 290 gigatonnes of carbon by the land biosphere and carbon release from the ocean in response to ...