Modeling the marine chromium cycle: new constraints on global-scale processes

Chromium (Cr) and its isotopes hold great promise as a tracer of past oxygenation and marine biological activity due to the contrasted chemical properties of its two main oxidation states, Cr(III) and Cr(VI), and the associated isotope fractionation during redox transformations. However, to date the...

Full description

Bibliographic Details
Main Authors: Pöppelmeier, Frerk, Janssen, David J., Jaccard, Samuel, Stocker, Thomas F.
Format: Text
Language:unknown
Published: Copernicus Publications 2021
Subjects:
Online Access:https://dx.doi.org/10.48350/166705
https://boris.unibe.ch/166705/
Description
Summary:Chromium (Cr) and its isotopes hold great promise as a tracer of past oxygenation and marine biological activity due to the contrasted chemical properties of its two main oxidation states, Cr(III) and Cr(VI), and the associated isotope fractionation during redox transformations. However, to date the marine Cr cycle remains poorly constrained due to insufficient knowledge about sources and sinks and the influence of biological activity on redox reactions. We therefore implemented the two oxidation states of Cr in the Bern3D Earth system model of intermediate complexity in order to gain an improved understanding on the mechanisms that modulate the spatial distribution of Cr in the ocean. Due to the computational efficiency of the Bern3D model we are able to explore and constrain the range of a wide array of parameters. Our model simulates vertical, meridional, and inter- basin Cr concentration gradients in good agreement with observations. We find a mean ocean residence time of Cr be- tween 5 and 8 kyr and a benthic flux, emanating from sedi- ment surfaces, of 0.1–0.2 nmolcm−2 yr−1, both in the range of previous estimates. We further explore the origin of regional model–data mismatches through a number of sensitivity experiments. These indicate that the benthic Cr flux may be substantially lower in the Arctic than elsewhere. In addition, we find that a refined representation of oxygen mini- mum zones and their potential to reduce Cr yield Cr(III) concentrations and Cr removal rates in these regions in much improved agreement with observational data. Yet, further re- search is required to better understand the processes that govern these critical regions for Cr cycling.