Sensitivity of aerosol optical depth trends using long-term measurements of different sun photometers ...

This work aims to assess differences in the aerosol optical depth (AOD) trend estimations when using high-quality AOD measurements from two different instruments with different technical characteristics and operational (e.g. measurement frequency), calibration and processing protocols. The different...

Full description

Bibliographic Details
Main Authors: Karanikolas, Angelos, Kouremeti, Natalia, Gröbner, Julian, Egli, Luca, Kazadzis, Stelios
Format: Article in Journal/Newspaper
Language:English
Published: ETH Zurich 2022
Subjects:
Online Access:https://dx.doi.org/10.3929/ethz-b-000576926
http://hdl.handle.net/20.500.11850/576926
Description
Summary:This work aims to assess differences in the aerosol optical depth (AOD) trend estimations when using high-quality AOD measurements from two different instruments with different technical characteristics and operational (e.g. measurement frequency), calibration and processing protocols. The different types of sun photometers are the CIMEL that is part of AERONET (AErosol RObotic NETwork) and a precision filter radiometer (PFR) that is part of the Global Atmosphere Watch Precision Filter Radiometer network. The analysis operated for two wavelengths (500 and 501 and 870 and 862 nm for CIMEL–PFR) in Davos, Switzerland, for the period 2007–2019. For the synchronous AOD measurements, more than 95 % of the CIMEL–PFR AOD differences are within the WMO-accepted limits, showing very good measurement agreement and homogeneity in calibration and post-correction procedures. AOD trends per decade in AOD for Davos for the 13-year period of analysis were approximately −0.017 and −0.007 per decade for 501 and 862 nm (PFR), ... : Atmospheric Measurement Techniques, 15 (19) ...