Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years ...

The Southern Ocean paleoceanography provides key insights into how iron fertilization and oceanic productivity developed through Pleistocene ice-ages and their role in influencing the carbon cycle. We report a high-resolution record of dust deposition and ocean productivity for the Antarctic Zone, c...

Full description

Bibliographic Details
Main Authors: Weber, Michael E., Bailey, Ian, Hemming, Sidney R., Martos, Yasmina M., Reilly, Brendan T., Ronge, Thomas A., Brachfeld, Stefanie, Williams, Trevor, Raymo, Maureen, Belt, Simon T., Smik, Lukas, Vogel, Hendrik, Peck, Victoria L., Armbrecht, Linda, Cage, Alix, Cardillo, Fabricio G., Du, Zhiheng, Fauth, Gerson, Fogwill, Christopher J., García, Marga, Garnsworthy, Marlo, Glüder, Anna, Guitard, Michelle, Gutjahr, Marcus, Hernández-Almeida, Iván, Hoem, Frida S., Hwang, Ji-Hwan, Iizuka, Mutsumi, Kato, Yuji, Kenlee, Bridget, O’Connell, Suzanne, Pérez, Lara F., Seki, Osamu, Stevens, Lee, Tauxe, Lisa, Tripathi, Shubham, Warnock, Jonathan, Zheng, Xufeng
Format: Text
Language:English
Published: ETH Zurich 2022
Subjects:
Online Access:https://dx.doi.org/10.3929/ethz-b-000544015
http://hdl.handle.net/20.500.11850/544015
Description
Summary:The Southern Ocean paleoceanography provides key insights into how iron fertilization and oceanic productivity developed through Pleistocene ice-ages and their role in influencing the carbon cycle. We report a high-resolution record of dust deposition and ocean productivity for the Antarctic Zone, close to the main dust source, Patagonia. Our deep-ocean records cover the last 1.5 Ma, thus doubling that from Antarctic ice-cores. We find a 5 to 15-fold increase in dust deposition during glacials and a 2 to 5-fold increase in biogenic silica deposition, reflecting higher ocean productivity during interglacials. This antiphasing persisted throughout the last 25 glacial cycles. Dust deposition became more pronounced across the Mid-Pleistocene Transition (MPT) in the Southern Hemisphere, with an abrupt shift suggesting more severe glaciations since ~0.9 Ma. Productivity was intermediate pre-MPT, lowest during the MPT and highest since 0.4 Ma. Generally, glacials experienced extended sea-ice cover, reduced ... : Nature Communications, 13 ...