eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity ...

Because significant global changes are currently underway in the Arctic, creating a large-scale standardized database for Arctic marine biodiversity is particularly pressing. This study evaluates the potential of aquatic environmental DNA (eDNA) metabarcoding to detect Arctic coastal biodiversity ch...

Full description

Bibliographic Details
Main Authors: Lacoursière‐Roussel, Anaïs, Howland, Kimberly, Normandeau, Eric, Grey, Erin K., Archambault, Philippe, Deiner, Kristy, Lodge, David M., Hernandez, Cecilia, Leduc, Noémie, Bernatchez, Louis
Format: Article in Journal/Newspaper
Language:English
Published: ETH Zurich 2018
Subjects:
Online Access:https://dx.doi.org/10.3929/ethz-b-000502270
http://hdl.handle.net/20.500.11850/502270
Description
Summary:Because significant global changes are currently underway in the Arctic, creating a large-scale standardized database for Arctic marine biodiversity is particularly pressing. This study evaluates the potential of aquatic environmental DNA (eDNA) metabarcoding to detect Arctic coastal biodiversity changes and characterizes the local spatio-temporal distribution of eDNA in two locations. We extracted and amplified eDNA using two COI primer pairs from ~80 water samples that were collected across two Canadian Arctic ports, Churchill and Iqaluit, based on optimized sampling and preservation methods for remote regions surveys. Results demonstrate that aquatic eDNA surveys have the potential to document large-scale Arctic biodiversity change by providing a rapid overview of coastal metazoan biodiversity, detecting nonindigenous species, and allowing sampling in both open water and under the ice cover by local northern-based communities. We show that DNA sequences of ~50% of known Canadian Arctic species and ... : Ecology and Evolution, 8 (16) ...