Monitoring rapid permafrost thaw using elevation models generated from satellite radar interferometry ...

Vast areas of the Arctic host ice-rich permafrost, which is becoming increasingly vulnerable to terrain-altering thermokarst in a warming climate. Among the most rapid and dramatic changes are retrogressive thaw slumps. These slumps evolve by a retreat of the slump headwall during the summer months,...

Full description

Bibliographic Details
Main Authors: Bernhard, Philipp, Zwieback, Simon, Leinss, Silvan, Hajnsek, Irena
Format: Text
Language:English
Published: ETH Zurich 2020
Subjects:
Ice
Online Access:https://dx.doi.org/10.3929/ethz-b-000453189
http://hdl.handle.net/20.500.11850/453189
Description
Summary:Vast areas of the Arctic host ice-rich permafrost, which is becoming increasingly vulnerable to terrain-altering thermokarst in a warming climate. Among the most rapid and dramatic changes are retrogressive thaw slumps. These slumps evolve by a retreat of the slump headwall during the summer months, making them detectable by comparing digital elevation models over time using the volumetric change as an indicator. Despite the availability of many topographic InSAR observations to generate digital elevation models, there is currently no method to map and analyze retrogressive thaw slumps. Here, we present and assess a method to detect and monitor thaw slumps using time-series of elevation models (DEMs), generated from single-pass InSAR observations, which have been acquired across the Arctic at high resolution since 2011 by the TanDEM-X satellite pair. At least three observations over this timespan are available with a spatial resolution of about 12 meter and the height sensitivity of 0.5-2 meter. We first ... : EGUsphere ...