Modelling a paleo valley glacier network using a hybrid model: an assessment with a Stokes ice flow model ...

Modelling paleo-glacier networks in mountain ranges on the millennial timescales requires ice flow approximations. Hybrid models calculating ice flow by combining vertical shearing (shallow ice approximation) and longitudinal stretching (shallow shelf approximation) have been applied to model paleo-...

Full description

Bibliographic Details
Main Authors: Imhof, Michael, Cohen, Denis, Seguinot, Julien, Aschwanden, Andy, Funk, Martin, Jouvet, Guillaume
Format: Article in Journal/Newspaper
Language:English
Published: ETH Zurich 2019
Subjects:
Online Access:https://dx.doi.org/10.3929/ethz-b-000398601
http://hdl.handle.net/20.500.11850/398601
Description
Summary:Modelling paleo-glacier networks in mountain ranges on the millennial timescales requires ice flow approximations. Hybrid models calculating ice flow by combining vertical shearing (shallow ice approximation) and longitudinal stretching (shallow shelf approximation) have been applied to model paleo-glacier networks on steep terrain, yet their validity has not yet been assessed quantitatively. Moreover, hybrid models consistently yield higher ice thicknesses than Last Glacial Maximum geomorphological reconstructions in the European Alps. Here, we compare results based on the hybrid Parallel Ice Sheet Model (PISM) and the Stokes model Elmer/Ice on the Rhine Glacier, a catchment of the former European Alpine Icefield. For PISM, we also test two magnitudes of flux limitation in a scheme that reduces shearing velocities. We find that the flux limitation typically used in PISM yields significantly reduced shearing speeds and increases ice thicknesses by up to 500 m, partly explaining previous overestimations. ... : Journal of Glaciology, 65 (254) ...