Impact of Saharan dust on North Atlantic marine stratocumulus clouds: importance of the semidirect effect ...

One component of aerosol–cloud interactions (ACI) involves dust and marine stratocumulus clouds (MSc). Few observational studies have focused on dust–MSc interactions, and thus this effect remains poorly quantified. We use observations from multiple sensors in the NASA A-Train satellite constellatio...

Full description

Bibliographic Details
Main Authors: Amiri-Farahani, Anahita, Allen, Robert J., Neubauer, David, Lohmann, Ulrike
Format: Article in Journal/Newspaper
Language:English
Published: ETH Zurich 2017
Subjects:
Online Access:https://dx.doi.org/10.3929/ethz-b-000190844
http://hdl.handle.net/20.500.11850/190844
Description
Summary:One component of aerosol–cloud interactions (ACI) involves dust and marine stratocumulus clouds (MSc). Few observational studies have focused on dust–MSc interactions, and thus this effect remains poorly quantified. We use observations from multiple sensors in the NASA A-Train satellite constellation from 2004 to 2012 to obtain estimates of the aerosol–cloud radiative effect, including its uncertainty, of dust aerosol influencing Atlantic MSc off the coast of northern Africa between 45° W and 15° E and between 0 and 35° N. To calculate the aerosol–cloud radiative effect, we use two methods following Quaas et al. (2008) (Method 1) and Chen et al. (2014) (Method 2). These two methods yield similar results of −1.5 ± 1.4 and −1.5 ± 1.6 W m−2, respectively, for the annual mean aerosol–cloud radiative effect. Thus, Saharan dust modifies MSc in a way that acts to cool the planet. There is a strong seasonal variation, with the aerosol–cloud radiative effect switching from significantly negative during the boreal ... : Atmospheric Chemistry and Physics, 17 (10) ...