Coupled climate impacts of the Drake Passage and the Panama Seaway ...

Tectonically-active gateways between ocean basins have modified ocean circulation over Earth history. Today, the Atlantic and Pacific are directly connected via the Drake Passage, which forms a barrier to the time-mean geostrophic transport between the subtropics and Antarctica. In contrast, during...

Full description

Bibliographic Details
Main Authors: Yang, Simon, Galbraith, Eric, Palter, Jaime B.
Format: Article in Journal/Newspaper
Language:English
Published: ETH Zurich 2014
Subjects:
Online Access:https://dx.doi.org/10.3929/ethz-b-000087226
http://hdl.handle.net/20.500.11850/87226
Description
Summary:Tectonically-active gateways between ocean basins have modified ocean circulation over Earth history. Today, the Atlantic and Pacific are directly connected via the Drake Passage, which forms a barrier to the time-mean geostrophic transport between the subtropics and Antarctica. In contrast, during the warm early Cenozoic era, when Antarctica was ice-free, the Drake Passage was closed. Instead, at that time, the separation of North and South America provided a tropical seaway between the Atlantic and Pacific that remained open until the Isthmus of Panama formed in the relatively recent geological past. Ocean circulation models have previously been used to explore the individual impacts of the Drake Passage and the Panama Seaway, but rarely have the two gateways been considered together, and most explorations have used very simple atmospheric models. Here we use a coupled ocean–ice–atmosphere model (GFDL’s CM2Mc), to simulate the impacts of a closed Drake Passage both with and without a Panama Seaway. We find ... : Climate Dynamics, 43 (1-2) ...