Pre-ABoVE: Particle Trajectories for WRF-STILT Model, Barrow, AK, 1982-2011

This dataset provides Stochastic Time-Inverted Lagrangian Transport model outputs for receptors located at the NOAA Barrow Alaska Observatory for 12 selected years (15 August to 15 October) across the 30-year, 1982 to 2011, study timeframe. Meteorological fields from version 3.5.1 of the Weather Res...

Full description

Bibliographic Details
Main Author: HENDERSON, J.
Format: Article in Journal/Newspaper
Language:English
Published: ORNL Distributed Active Archive Center 2018
Subjects:
Online Access:https://dx.doi.org/10.3334/ornldaac/1571
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1571
Description
Summary:This dataset provides Stochastic Time-Inverted Lagrangian Transport model outputs for receptors located at the NOAA Barrow Alaska Observatory for 12 selected years (15 August to 15 October) across the 30-year, 1982 to 2011, study timeframe. Meteorological fields from version 3.5.1 of the Weather Research and Forecasting model are used to drive STILT. STILT applies a Lagrangian particle dispersion model backwards in time from a measurement location (the "receptor" location), to create the adjoint of the transport model in the form of a "footprint" field. The footprint, with units of mixing ratio (ppm --- CO2; ppb --- CH4) per (umol m-2 s-1 --- CO2; nmol m-2 s-1 --- CH4), quantifies the influence of upwind surface fluxes on concentrations measured at the receptor and is computed by counting the number of particles in a surface-influenced volume and the time spent in that volume. The simulation results included in this dataset are crucial for understanding changes in Arctic carbon cycling and are part of a retrospective analysis to link changes in atmospheric composition at Arctic receptor sites with shifts in ecosystem structure and function.