Southern Ocean ecosystem and global carbon cycle responses to iron fertilisation during the last glacial cycle ...

Rising atmospheric CO2 concentration is one of the major drivers of climate change. To provide effective mitigation policies to curb these emissions, a thorough understanding of past changes in the carbon cycle is required. Decades of research on understanding carbon cycle changes during the last gl...

Full description

Bibliographic Details
Main Author: Saini, Himadri
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: UNSW Sydney 2023
Subjects:
Online Access:https://dx.doi.org/10.26190/unsworks/25038
http://hdl.handle.net/1959.4/101331
Description
Summary:Rising atmospheric CO2 concentration is one of the major drivers of climate change. To provide effective mitigation policies to curb these emissions, a thorough understanding of past changes in the carbon cycle is required. Decades of research on understanding carbon cycle changes during the last glacial cycle have put forward several processes impacting the concentration of atmospheric CO2. One of these processes is changes in aeolian iron flux into the Southern Ocean. Marine plankton fix dissolved inorganic carbon (DIC) during photosynthesis and transfer the fixed carbon to the deep ocean. DIC removal from the surface lowers the surface ocean partial pressure of CO2, which leads to carbon drawdown from the atmosphere. As the Southern Ocean is a high-nutrient-low-chlorophyll region, the increase in iron input can impact Southern Ocean marine ecosystems, by increasing export production, and therefore decreasing surface DIC. This thesis aims to investigate the responses of Southern Ocean marine ecosystems to ...