Cretaceous-Paleogene evolution of the proto-Paratethys Sea in Central Asia : mechanisms and paleoenvironmental impacts : Mechanismen und paläoökologische Auswirkungen
Unlike today’s prevailing terrestrial features, the geologic past of Central Asia witnessed marine environments and conditions as well. A vast, shallow sea, known as proto-Paratethys, extended across Eurasia from the Mediterranean Tethys to the Tarim Basin in western China during Cretaceous to Paleo...
Main Author: | |
---|---|
Format: | Thesis |
Language: | English |
Published: |
Universität Potsdam
2020
|
Subjects: | |
Online Access: | https://dx.doi.org/10.25932/publishup-48329 https://publishup.uni-potsdam.de/48329 |
Summary: | Unlike today’s prevailing terrestrial features, the geologic past of Central Asia witnessed marine environments and conditions as well. A vast, shallow sea, known as proto-Paratethys, extended across Eurasia from the Mediterranean Tethys to the Tarim Basin in western China during Cretaceous to Paleogene times. This sea formed about 160 million years ago (during Jurassic times) when the waters of the Tethys Ocean flooded into Eurasia. It drastically retreated to the west and became isolated as the Paratethys during the Late Eocene-Oligocene (ca. 34 Ma). Having well-constrained timing and paleogeography for the Cretaceous-Paleogene proto-Paratethys sea incursions in Central Asia is essential to properly understand and distinguish the controlling mechanisms and their link to Asian paleoenvironmental and paleoclimatic change. The Cretaceous-Paleogene tectonic evolution of the Pamir and Tibet and their far-field effects play a significant role on the sedimentological and structural evolution of the Central Asian basins and on the evolution of the proto-Paratethys sea fluctuations as well. Comparing the records of the sea incursions to the tectonic and eustatic events has paramount importance to reveal the controlling mechanisms behind the sea incursions. However, due to inaccuracies in the dating of rocks (mostly continental rocks and marine rocks with benthic microfossils providing low-resolution biostratigraphic constraints) and conflicting results, there has been no consensus on the timing of the sea incursions and interpretation of their records has been in question. Here, we present a new chronostratigraphic framework based on biostratigraphy and magnetostratigraphy as well as a detailed paleoenvironmental analysis for the Cretaceous and Paleogene proto-Paratethys Sea incursions in the Tajik and Tarim basins, in Central Asia. This enables us to identify the major drivers of marine fluctuations and their potential consequences on regional and global climate, particularly Asian aridification and the global carbon cycle perturbations such as the Paleocene-Eocene Thermal Maximum (PETM). To estimate the paleogeographic evolution of the proto-Paratethys Sea, the refined age constraints and detailed paleoenvironmental interpretations are combined with successive paleogeographic maps. Regional coastlines and depositional environments during the Cretaceous-Paleogene sea advances and retreats were drawn based on the results of this thesis and integrated with existing literature to generate new paleogeographic maps. Before its final westward retreat in the Eocene, a total of six Cretaceous and Paleogene major sea incursions have been distinguished from the sedimentary records of the Tajik and Tarim basins in Central Asia. All have been studied and documented here. We identify the presence of marine conditions already in the Early Cretaceous in the western Tajik Basin, followed by the Cenomanian (ca. 100 Ma) and Santonian (ca. 86 Ma) major marine incursions far into the eastern Tajik and Tarim basins separated by a Turonian-Coniacian (ca. 92-86 Ma) regression. Basin-wide tectonic subsidence analyses imply that the Early Cretaceous invasion of the sea into the Tajik Basin is related to increased Pamir tectonism (at ca. 130 – 90 Ma) in a retro-arc basin setting inferred to be linked to collision and subduction. This tectonic event mainly governed the Cenomanian (ca. 100 Ma) sea incursion in conjunction with a coeval global eustatic high resulting in the maximum geographic extent of the sea. The following Turonian-Coniacian (ca. 92-86 Ma) major regression, driven by eustasy, coincides with a sharp slowdown in tectonic subsidence related to a regime change in Pamir tectonism from compression to extension. The Santonian (ca. 86 Ma) major sea incursion was more likely controlled dominantly by eustasy as also evidenced by the coeval fluctuations in the west Siberian Basin. During the early Maastrichtian, the global Late Cretaceous cooling is inferred from the disappearance of mollusk-rich limestones and the dominance of bryozoan-rich and echinoderm-rich limestones in the Tajik Basin documenting the first evidence for the Late Cretaceous cooling event in Central Asia. Following the last Cretaceous sea incursion, a major regional restriction event, marked by the exceptionally thick (≤ 400 m) shelf evaporites is assigned a Danian-Selandian age (ca. 63-59 Ma). This is followed by the largest recorded proto-Paratethys sea incursion with a transgression estimated as early Thanetian (ca. 59-57 Ma) and a regression within the Ypresian (ca. 53-52 Ma). The transgression of the next incursion is now constrained as early Lutetian (ca. 47-46 Ma), whereas its regression is constrained as late Lutetian (ca. 41 Ma) and is associated with a drastic increase in both tectonic subsidence and basin infilling. The age of the final and least pronounced sea incursion restricted to the westernmost margin of the Tarim Basin is assigned as Bartonian–Priabonian (ca. 39.7-36.7 Ma). We interpret the long-term westward retreat of the proto-Paratethys Sea starting at ca. 41 Ma to be associated with far-field tectonic effects of the Indo-Asia collision and Pamir/Tibetan plateau uplift. Short-term eustatic sea level transgressions are superimposed on this long-term regression and seem coeval with the transgression events in the other northern Peri-Tethyan sedimentary provinces for the 1st and 2nd Paleogene sea incursions. However, the last Paleogene sea incursion is interpreted as related to tectonism. The transgressive and regressive intervals of the proto-Paratethys Sea correlate well with the reported humid and arid phases, respectively in the Qaidam and Xining basins, thus demonstrating the role of the proto-Paratethys Sea as an important moisture source for the Asian interior and its regression as a contributor to Asian aridification. We lastly study the mechanics, relative contribution and preservation efficiency of ancient epicontinental seas as carbon sinks with new and existing data, using organic rich (sapropel) deposits dated to the PETM from the extensive epicontinental proto-Paratethys and West Siberian seas. We estimate ca. 1390±230 Gt organic C burial, a substantial amount compared to previously estimated global total excess organic C burial (ca. 1700-2900 Gt) is focused in the proto-Paratethys and West Siberian seas alone. We also speculate that enhanced organic carbon burial later over much of the proto-Paratethys (and later Paratethys) basin (during the deposition of the Kuma Formation and Maikop series, repectively) may have majorly contributed to drawdown of atmospheric carbon dioxide before and during the EOT cooling and glaciation of Antarctica. For past periods with smaller epicontinental seas, the effectiveness of this negative carbon cycle feedback was arguably diminished, and the same likely applies to the present-day. : Im Gegensatz zu den heute vorherrschenden kontinentalen Bedingungen war die geologische Vergangenheit Zentralasiens auch Zeuge marin dominierter Phasen. Ein riesiges Schelfmeer, bekannt als Proto-Paratethys, erstreckte sich während der Kreidezeit bis zum Paläogen über Eurasien - von der Tethys im Mittelmeer bis zum Tarimbecken im Westen Chinas. Dieses Meer bildete sich vor etwa 160 Millionen Jahren während der Jurazeit, als das Wasser des Tethys-Ozeans nach Eurasien strömte. Es zog sich drastisch nach Westen zurück und wurde während des späten Eozän-Oligozäns (ca. 34 Ma) als Paratethys isoliert. Eine gut eingegrenzte zeitliche Einordnung und Paläogeographische Charakterisierung für die kretazisch-paläogenen proto-Paratethys-Meerestransgressionen in Zentralasien ist unerlässlich, um die Kontrollmechanismen und ihre Verbindung mit den paläoökologischen und paläoklimatischen Veränderungen in Asien richtig zu verstehen und zu unterscheiden. Die kreidezeitlich-paläogene tektonische Entwicklung des Pamir und Tibets und ihre Fernfeldeffekte spielen eine bedeutende Rolle für die Entwicklung der zentralasiatischen Becken und der proto-paläozoischen Meeresschwankungen. Aufgrund von Ungenauigkeiten bei der Datierung der Gesteine und widersprüchlichen Ergebnissen gab es jedoch bislang keinen Konsens über den Zeitpunkt der Meerestransgressionen. Die Interpretation der dabei abgelagerten Sedimentfolgen wurde in Frage gestellt. Hier präsentieren wir eine neue, zeitliche Einordung auf Grundlage von Biostratigraphie und Magnetostratigraphie sowie eine detaillierte Paläoumweltanalyse für die Transgressionen des kreidezeitlichen und paläogenen proto-Paratethys-Meeres im tadschikischen und Tarimbecken in Zentralasien. Dies ermöglicht es uns, die wichtigsten Triebkräfte der marinen Fluktuationen und ihre möglichen Auswirkungen auf das regionale und globale Klima zu identifizieren - insbesondere die asiatische Aridifizierung und die Störungen des globalen Kohlenstoffkreislaufs etwa während des paläozän-eozänen thermischen Maximums (PETM). Beckenweite tektonische Senkungsanalysen deuten darauf hin, dass die frühkretazische Transgressionsphase im Tadschikischen Becken mit einer Intensivierung der Kollisionstektonik im Pamir (zwischen ca. 130 und 90 Ma) und der damit verbundenen Bildung eines Retro-Arc-Beckens in Zusammenhang stehen. Die globale Abkühlung der Spätkreide wird aus dem Verschwinden von molluskenreichen Kalksteinen und der Dominanz von bryozoen- und echinodermenreichen Kalksteinen im Tadschikischen Becken abgeleitet. Dies liefert den ersten Nachweis für das Abkühlungsereignis der Spätkreide in Zentralasien. Wir interpretieren die langfristige paläogene Regression des Proto-Paratethys-Meeres Richtung Westen ab ca. 41 Ma mit den tektonischen Fernfeldeffekten der indo-asiatischen Kollision und der Hebung des Pamir/Tibetischen Plateaus. Die transgressiven und regressiven Intervalle der proto-Paratethys-See korrelieren gut mit den bekannten feuchten und ariden Phasen im Qaidam- bzw. Xining-Becken, was die Rolle der proto-Paratethys-See als wichtige Feuchtigkeitsquelle für das asiatische Binnenland und ihren Rückzug als Mitverursacher der asiatischen Aridifizierung verdeutlicht. Schließlich untersuchen wir die Wirkungsfaktoren, den relativen Beitrag und die Erhaltungseffizienz alter epikontinentaler Meere als Kohlenstoffsenken mit neuen und bestehenden Daten. Dabei verwenden wir organik-reiche Ablagerungen aus den ausgedehnten epikontinentalen Proto-Paratethys- und westsibirischen Meeren, die auf das PETM datiert sind. Wir schätzen eine Einlagerung von ca. 1390±230 Gt organischer Kohlenstoffverbindungen. Das stellt eine beachtliche Menge, verglichen mit der zuvor geschätzten globalen Gesamtmenge an überschüssiger organischer Kohlenstoffeinlagerung (ca. 1700-2900 Gt) dar, welche sich allein auf die Proto-Paratethys und die westsibirischen Meere konzentriert. Für vergangene und zukünftige Perioden mit kleineren epikontinentalen Meeren würde die Wirksamkeit dieser negativen Rückkopplung des Kohlenstoffkreislaufs wohl abnehmen. |
---|