A combined globally mapped carbon dioxide (CO2) flux estimate based on the Surface Ocean CO2 Atlas Database (SOCAT) and Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemistry floats from 1982 to 2017 (NCEI Accession 0191304) ...

This dataset contains a combined globally mapped estimate of the air-sea exchange of carbon dioxide (CO2) based on Surface Ocean CO2 Atlas Database (SOCAT) partial pressure of CO2 (pCO2) and calculated pCO2 from Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemistry flo...

Full description

Bibliographic Details
Main Authors: Landschützer, Peter, Bushinsky, Seth M., Gray, Alison R.
Format: Dataset
Language:unknown
Published: NOAA National Centers for Environmental Information 2019
Subjects:
Online Access:https://dx.doi.org/10.25921/9hsn-xq82
https://www.ncei.noaa.gov/archive/accession/0191304
Description
Summary:This dataset contains a combined globally mapped estimate of the air-sea exchange of carbon dioxide (CO2) based on Surface Ocean CO2 Atlas Database (SOCAT) partial pressure of CO2 (pCO2) and calculated pCO2 from Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemistry floats from 1982 to 2017. The pCO2 fields were created using a 2-step neural network technique. In a first step, the global ocean is divided into 16 biogeochemical provinces using a self-organizing map. In a second step, the non-linear relationship between variables known to drive the surface ocean carbon system and gridded observations from the SOCAT dataset (Bakker et al., 2016) starting in 1982 in various combinations with calculated pCO2 from biogeochemical ARGO floats starting in 2014 from the SOCCOM project (Johnson et al., 2017) is reconstructed using a feed-forward neural network within each province separately. The final product is then produced by projecting these driving variables, i.e., surface ...