HELiX Uncrewed Aircraft System data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Campaign

The dataset is derived from HELiX Uncrewed Aircraft System flights that were conducted in the Central Arctic Ocean over sea ice during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The data include Universal Coordinated Time (UTC), downwelling and up...

Full description

Bibliographic Details
Main Authors: Calmer, Radiance, De Boer, Gijs, Hamilton, Jonathan, Lawrence, Dale, Borenstein, Steve, Cox, Christopher, Argrow, Brian, Cassano, John
Format: Dataset
Language:English
Published: NSF Arctic Data Center 2021
Subjects:
UAS
Online Access:https://dx.doi.org/10.18739/a2gh9bb0q
https://arcticdata.io/catalog/view/doi:10.18739/A2GH9BB0Q
Description
Summary:The dataset is derived from HELiX Uncrewed Aircraft System flights that were conducted in the Central Arctic Ocean over sea ice during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The data include Universal Coordinated Time (UTC), downwelling and upwelling shortwave radiation measurements, and position and attitude from the Uncrewed Aircraft System (UAS). Temperature, relative humidity and pressure from two different sensors are also provided. A quality control flag is associated with each scientific measurement. A flight flag is also included to indicate the different phases of the flight - on the ground, take-off/landing phases, and in flight. All the data have been synchronized and interpolated at 10 hertz (Hz). The purpose of this dataset is to provide information on albedo over different features of the sea ice (snow, melt pond, ocean). Three flight patterns were implemented during the campaign with the HELiX, a grid pattern at constant altitude (15 meters or 7 meters above ground level), hovering flights ( 2-5 minutes hovering over identified sea ice features at low altitude ~ 3 meters above ground level), and profiles up to 400 meters above ground level. Displaying latitude, longitude and altitude will help users to identify the flight pattern. Albedo measurements have been validated with surface-based measurements and details can be found in de Boer, G. R. Calmer, G. Jozef, J. Cassano, J. Hamilton, D. Lawrence, S. Borenstein, A. Doddi, C. Cox, J. Schmale, A. Preußer and B. Argrow (2021): Observing the Central Arctic Atmosphere and Surface with University of Colorado Uncrewed Aircraft Systems, Nature Scientific Data, in prep.