Multitemporal terrestrial laser scanning point clouds for thaw subsidence observation at Arctic permafrost monitoring sites ...

This paper investigates different methods for quantifying thaw subsidence using terrestrial laser scanning (TLS) point clouds. Thaw subsidence is a slow (millimetre to centimetre per year) vertical displacement of the ground surface common in ice-rich permafrost-underlain landscapes. It is difficult...

Full description

Bibliographic Details
Main Authors: Anders, Katharina, Marx, Sabrina, Boike, Julia, Herfort, Benjamin, Wilcox, Evan J, Langer, Moritz, Marsh, Philip, Höfle, Bernhard
Format: Article in Journal/Newspaper
Language:English
Published: Humboldt-Universität zu Berlin 2020
Subjects:
Ice
Online Access:https://dx.doi.org/10.18452/25057
https://edoc.hu-berlin.de/handle/18452/25740
Description
Summary:This paper investigates different methods for quantifying thaw subsidence using terrestrial laser scanning (TLS) point clouds. Thaw subsidence is a slow (millimetre to centimetre per year) vertical displacement of the ground surface common in ice-rich permafrost-underlain landscapes. It is difficult to quantify thaw subsidence in tundra areas as they often lack stable reference frames. Also, there is no solid ground surface to serve as a basis for elevation measurements, due to a continuous moss–lichen cover. We investigate how an expert-driven method improves the accuracy of benchmark measurements at discrete locations within two sites using multitemporal TLS data of a 1-year period. Our method aggregates multiple experts’ determination of the ground surface in 3D point clouds, collected in a web-based tool. We then compare this to the performance of a fully automated ground surface determination method. Lastly, we quantify ground surface displacement by directly computing multitemporal point cloud ...