The Ocean Boundary Layer beneath Larsen C Ice Shelf: Insights from Large-Eddy Simulations with a Near-Wall Model ...

Abstract The melt rate of Antarctic ice shelves is of key importance for rising sea levels and future climate scenarios. Recent observations beneath Larsen C Ice Shelf revealed an ocean boundary layer that was highly turbulent and raised questions on the effect of these rich flow dynamics on the oce...

Full description

Bibliographic Details
Main Authors: Vreugdenhil, CA, Taylor, Davis, PED, Nicholls, KW, Holland, PR, Jenkins, A
Format: Article in Journal/Newspaper
Language:English
Published: American Meteorological Society 2022
Subjects:
Online Access:https://dx.doi.org/10.17863/cam.84052
https://www.repository.cam.ac.uk/handle/1810/336631
Description
Summary:Abstract The melt rate of Antarctic ice shelves is of key importance for rising sea levels and future climate scenarios. Recent observations beneath Larsen C Ice Shelf revealed an ocean boundary layer that was highly turbulent and raised questions on the effect of these rich flow dynamics on the ocean heat transfer and the ice shelf melt rate. Directly motivated by the field observations, we have conducted large-eddy simulations (LES) to further examine the ocean boundary layer beneath Larsen C Ice Shelf. The LES was initialized with uniform temperature and salinity (T–S) and included a realistic tidal cycle and a small basal slope. A new parameterization based on previous work was applied at the top boundary to model near-wall turbulence and basal melting. The resulting vertical T–S profiles, melt rate, and friction velocity matched well with the Larsen C Ice Shelf observations. The instantaneous melt rate varied strongly with the tidal cycle, with faster flow increasing the turbulence and mixing of heat ...