Tectonic earthquake swarms in the Northern Volcanic Zone, Iceland ...

Microseismicity offers an opportunity to image subsurface deformation at exceptionally high spatial and temporal resolution. This may be related to a diverse range of processes, including fore- and aftershocks to destructive earthquakes on large faults, magma movement at volcanoes, or the gradual ad...

Full description

Bibliographic Details
Main Author: Winder, Thomas
Format: Thesis
Language:English
Published: Apollo - University of Cambridge Repository 2021
Subjects:
Online Access:https://dx.doi.org/10.17863/cam.82505
https://www.repository.cam.ac.uk/handle/1810/335065
Description
Summary:Microseismicity offers an opportunity to image subsurface deformation at exceptionally high spatial and temporal resolution. This may be related to a diverse range of processes, including fore- and aftershocks to destructive earthquakes on large faults, magma movement at volcanoes, or the gradual advance of glaciers. Microearthquakes at faults might also signal more exotic behaviour, including due to transient events such as fluid injections or pulses of aseismic fault creep. The study of small earthquakes has advanced significantly over the past decades, as seismology has entered the digital age. Denser networks, with larger numbers of more sensitive seismometers allow ever smaller seismic events to be detected and analysed. The study of larger numbers of earthquakes brings a raft of benefits, including more robust statistical analyses, higher temporal resolution, and the opportunity to achieve significantly greater spatial resolution by harnessing the power of relative relocation algorithms. However, the ...