Precambrian Plate Tectonics in Northern Hudson Bay: Evidence From P and S Wave Seismic Tomography and Analysis of Source Side Effects in Relative Arrival-Time Data Sets ...

AbstractThe geology of northern Hudson Bay, Canada, documents more than 2 billion years of history including the assembly of Precambrian and Archean terranes during several Paleoproterozoic orogenies, culminating in the Trans‐Hudson Orogen (THO) ∼1.8 Ga. The THO has been hypothesized to be similar i...

Full description

Bibliographic Details
Main Authors: Liddell, MV, Bastow, I, Rawlinson, N, Darbyshire, F, Gilligan, A, Watson, E
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union (AGU) 2018
Subjects:
Online Access:https://dx.doi.org/10.17863/cam.32107
https://www.repository.cam.ac.uk/handle/1810/284735
Description
Summary:AbstractThe geology of northern Hudson Bay, Canada, documents more than 2 billion years of history including the assembly of Precambrian and Archean terranes during several Paleoproterozoic orogenies, culminating in the Trans‐Hudson Orogen (THO) ∼1.8 Ga. The THO has been hypothesized to be similar in scale and nature to the ongoing Himalaya‐Karakoram‐Tibetan orogen, but the nature of lithospheric terrane boundaries, including potential plate‐scale underthrusting, is poorly understood. To address this problem, we present new P and S wave tomographic models of the mantle seismic structure using data from recent seismograph networks stretching from northern Ontario to Nunavut (60–100 ∘ W and 50–80 ∘ N). The large size of our network requires careful mitigation of the influence of source side structure that contaminates our relative arrival time residuals. Our tomographic models reveal a complicated internal structure in the Archean Churchill plate. However, no seismic wave speed distinction is observed across ...