Impact of spatial, spectral, and radiometric properties of multispectral imagers on glacier surface classification ...

Using multispectral remote sensing, glacier surfaces can be classified into a range of zones. The properties of these classes are used for a range of glaciological applications including mass balance measurements, glacial hydrology, and melt modelling. However, it is not immediately evident that mul...

Full description

Bibliographic Details
Main Authors: Pope, A, Rees, WG
Format: Text
Language:unknown
Published: Apollo - University of Cambridge Repository 2014
Subjects:
Online Access:https://dx.doi.org/10.17863/cam.15555
https://www.repository.cam.ac.uk/handle/1810/301386
Description
Summary:Using multispectral remote sensing, glacier surfaces can be classified into a range of zones. The properties of these classes are used for a range of glaciological applications including mass balance measurements, glacial hydrology, and melt modelling. However, it is not immediately evident that multispectral data should be optimal for imaging glaciers and ice caps. Thus, this investigation takes an inverse perspective. Taking into account spectral and radiometric properties, in situ spectral reflectance data were used to simulate glacier surface response for a suite of multispectral sensors. Sensor-simulated data were classified and compared. In addition, airborne multispectral imagery was classified for a range of spatial resolutions and intercompared in three different ways. In these analyses, the most important property which determined the suitability of a multispectral imager for glacier surface classification was its radiometric range (i.e. gain settings). Low resolution imagery (250. m. pixels) is ... : A. Pope was supported by the National Science Foundation Graduate Research Fellowship Programme under Grant No. DGE-1038596. Further research support came from UK Natural Environment Research Council's Field Spectroscopy Facility, ARCFAC (the European Centre for Arctic Environmental Research), Trinity College Cambridge, Sigma Xi, the Norwegian Marshall Fund, the Explorers Club, the National Geographic Society Young Explorers Program, the Scott Polar Research Institute, the Cambridge University Geography Department, the Cambridge University Department of Anglo-Saxon, Norse, and Celtic Studies, and the Cambridge University Worts Fund. ...