Dataset to the publication: Close coupling of plant functional types with soil microbial community composition drives soil carbon and nutrient cycling in tundra heath ...

Aims This study aimed at elucidating divergent effects of two dominant plant functional types (PFTs) in tundra heath, dwarf shrubs and mosses, on microbial decomposition processes and soil carbon (C) and nutrient cycling, and thereby to enhance our understanding of the complex interactions between P...

Full description

Bibliographic Details
Main Author: Marianne Koranda
Format: Dataset
Language:unknown
Published: Mendeley 2023
Subjects:
Online Access:https://dx.doi.org/10.17632/4gn7tk33ph
https://data.mendeley.com/datasets/4gn7tk33ph
Description
Summary:Aims This study aimed at elucidating divergent effects of two dominant plant functional types (PFTs) in tundra heath, dwarf shrubs and mosses, on microbial decomposition processes and soil carbon (C) and nutrient cycling, and thereby to enhance our understanding of the complex interactions between PFTs, soil microbes and soil functioning. Methods Samples of organic soil were collected under three dwarf shrub species (of distinct mycorrhizal association and life form) and three moss species in early and late growing season and analysed for soil C and nutrient pools, extracellular enzyme activities and phospholipid fatty acid profiles, together with a range of plant traits, soil and abiotic site characteristics. Results Shrub soils were characterised by high microbial biomass C and phosphorus and phosphatase activity, which was linked with a fungal-dominated microbial community, while moss soils were characterised by high soil nitrogen availability, peptidase and peroxidase activity associated with a ...