The application of millimetre-wave radar to the study of the cryosphere ...

This thesis develops the technique of millimetre-wave radar at 94 GHz for close-range remote sensing of glaciers and terrestrial snow cover (the cryosphere). The capabilities of 94 GHz radar for cryosphere mapping are demonstrated using the 2ⁿᵈ generation All-weather Volcano Topography Imaging Senso...

Full description

Bibliographic Details
Main Author: Harcourt, William David
Format: Thesis
Language:English
Published: The University of St Andrews 2023
Subjects:
Online Access:https://dx.doi.org/10.17630/sta/360
https://research-repository.st-andrews.ac.uk/handle/10023/27235
Description
Summary:This thesis develops the technique of millimetre-wave radar at 94 GHz for close-range remote sensing of glaciers and terrestrial snow cover (the cryosphere). The capabilities of 94 GHz radar for cryosphere mapping are demonstrated using the 2ⁿᵈ generation All-weather Volcano Topography Imaging Sensor (AVTIS2), which maps 3D terrain from real-beam scanning. AVTIS2 acquires 3D point clouds of terrain and a comparison to co-located high density point clouds derived from Terrestrial Laser Scanner (TLS) data showed that AVTIS2 point cloud uncertainties were 1.5 m at 1.5 km and 3 m at 3 km. These values are smaller than other close-range radar systems used to map cryospheric terrain in 3D. Next, the distribution of Normalised Radar Cross Section (σ⁰) values over glacier ice at 94 GHz was found to be −17.0 < σ⁰ < −3.4; σ⁰ₘₑₐₙ = −9.9 dB and followed a log-normal distribution. These values are comparable to other terrain types at 94 GHz such as refrozen snow, wet snow and wet soil, hence glacier surfaces were ...