Continuous Flow of Upper Labrador Sea Water around Cape Hatteras ...

Six velocity sections straddling Cape Hatteras show a deep counterflow rounding the Cape wedged beneath the poleward flowing Gulf Stream and the continental slope. This counterflow is likely the upper part of the equatorward-flowing Deep Western Boundary Current (DWBC). Hydrographic data suggest tha...

Full description

Bibliographic Details
Main Authors: Bane, J., Andres, M., Muglia, M., Bahr, F.
Format: Text
Language:English
Published: Nature Publishing Group 2018
Subjects:
Online Access:https://dx.doi.org/10.17615/5j2z-n246
https://cdr.lib.unc.edu/concern/articles/70795k17r
Description
Summary:Six velocity sections straddling Cape Hatteras show a deep counterflow rounding the Cape wedged beneath the poleward flowing Gulf Stream and the continental slope. This counterflow is likely the upper part of the equatorward-flowing Deep Western Boundary Current (DWBC). Hydrographic data suggest that the equatorward flow sampled by the shipboard 38 kHz ADCP comprises the Upper Labrador Sea Water (ULSW) layer and top of the Classical Labrador Sea Water (CLSW) layer. Continuous DWBC flow around the Cape implied by the closely-spaced velocity sections here is also corroborated by the trajectory of an Argo float. These findings contrast with previous studies based on floats and tracers in which the lightest DWBC constituents did not follow the boundary to cross under the Gulf Stream at Cape Hatteras but were diverted into the interior as the DWBC encountered the Gulf Stream in the crossover region. Additionally, our six quasi-synoptic velocity sections confirm that the Gulf Stream intensified markedly at that ...