Exploring local fishery management through cooperative acoustic surveys in the Aleutian Islands

An alternate management system is introduced which uses seasonal and spatially explicit multi-species quotas generated from small-scale cooperative fishery acoustic surveys to manage the Aleutian Islands walleye pollock (Gadus chalcogrammus) fishery while limiting impacts on the endangered Western s...

Full description

Bibliographic Details
Main Authors: Barbeaux, Steven, Fritz, Lowell, Logerwell, Elizabeth
Format: Report
Language:unknown
Published: MarXiv 2018
Subjects:
Online Access:https://dx.doi.org/10.17605/osf.io/m2hr6
https://marxiv.org/m2hr6/
Description
Summary:An alternate management system is introduced which uses seasonal and spatially explicit multi-species quotas generated from small-scale cooperative fishery acoustic surveys to manage the Aleutian Islands walleye pollock (Gadus chalcogrammus) fishery while limiting impacts on the endangered Western stock of Steller sea lions (Eumetopias jubatus). This is a novel collaboration among scientists, industry, and Alaska Natives considering a cooperative management approach. The proposed system integrates the catch monitoring and accounting systems already in place in the federal groundfish fisheries off Alaska with cooperative acoustic survey biomass estimates to facilitate more refined spatial and temporal fishery management decisions. Conditions were examined under which such a system could operate successfully and results from field work conducted to assess technical requirements were discussed. During field trials biomass estimates from each survey were produced within 24-h of survey completion. This suggests spatial abundance estimates can be available in a timely manner for managing local fisheries. The proposed management system was found feasible and relatively easy to initiate because of highly motivated and cooperative industry partners, a well-established mechanism for setting allowable catch limits, and a robust catch accounting system already in place. In addition, high quality commercial echosounders required for this system are currently used by industry and, with proper controls on calibration and survey design, produce biomass estimates of sufficient quality. The application of this approach beyond this case study is also discussed for managing fisheries worldwide where fine temporal and spatial scale management could benefit the conservation of other protected species.