Data for Interannual variability in the source location of North African dust transported to the Amazon

Here, we present the data and MixSIAR code that corresponds to the manuscript “Interannual variability in the source location of North African dust transported to the Amazon.” African dust is seasonally transported to the western Tropical Atlantic Ocean (TAO) and South America (SA), including the Am...

Full description

Bibliographic Details
Main Authors: Gaston, Cassandra, Pourmand, A, Longman, J, Sharifi, A, Prospero, Joseph, Panechou, K, Bakker, N, Drake, N, Guioiseau, D, Barkley, Anne
Format: Dataset
Language:unknown
Published: University of Miami Libraries 2021
Subjects:
Online Access:https://dx.doi.org/10.17604/qqq0-p310
https://scholarship.miami.edu/permalink/01UOML_INST/105q9vf/alma991031652420702976
Description
Summary:Here, we present the data and MixSIAR code that corresponds to the manuscript “Interannual variability in the source location of North African dust transported to the Amazon.” African dust is seasonally transported to the western Tropical Atlantic Ocean (TAO) and South America (SA), including the Amazon Basin. Leading hypotheses suggest that either the Western North African potential source area (PSA) or the Central North African PSA (e.g., Bodélé Depression) is the main source of dust transported to the Amazon. However, these notions remain largely untested with geochemical data. Here, we present a more nuanced hypothesis: both PSAs contribute dust to SA with precipitation and wind patterns determining the dominant source. Our premise is based upon two years of isotopic measurements (strontium and neodymium) of African dust collected in SA integrated into a statistical model in a Bayesian framework. With this approach, we identified strong interannual variability: while the Central PSA supplied 48% in winter 2016, a region within the Western PSA, which we suggest may be located near Niger, Mali, and Algeria accounts for 54% of transport in winter 2014. We propose the variability is due to the strength of the Libyan High and differing amounts of precipitation in the Gulf of Guinea and TAO between the two years. We anticipate that our work will lead to better constraints of dust nutrient deposition and subsequent carbon sequestration in the TAO and Amazon as well as improved model predictions of dust transport. Due to the connection between dust, precipitation, and wind patterns, our work can be used to link changes in climate with past changes in the source and magnitude of dust transported to the Amazon and TAO. This data is associated with the article: Barkley, A.E., Pourmand, A., Longman, J., Sharifi, A., Prospero, J.M., Panechou, K., Bakker, N., Drake, N., Guioiseau, D., Gaston, C.J. Interannual variability in the source location of North African dust transported to the Amazon. Submitted to the Proceedings of the National Academy of Sciences : ## Description of the datasets The `data/` folder contains three data sets. `ds01` contains the data collected in this study from 34 samples including the dates of collection and Sr and eNd isotopic ratios. ## Metadata of the trajectory file ds01 is a *csv* file that contain 12 columns. Column 1 presents the date in the format ‘MM:DD:YYYY’ (e.g., 01-30-2014) that sample collection was initiated. Column 2 presents the date ‘MM:DD:YYYY’ (e.g., 01-31-2014) sample collection ended. Column 3 shows the mean 87Sr/86Sr ratio (unitless) measured and Column 4 shows the 95% confidence interval (CI) for each sample run in triplicate. Column 5 shows the 143Nd/144Nd isotopic ratio reported as epsilon neodymium (unitless) and Column 6 presents the 95% CI of the mean epsilon Nd. Columns 7, 9, and 11 show the lead (Pb) isotopic ratios normalized to 204Pb with their corresponding 95% CI in Columns 8, 10, and 12.