Seawater carbonate chemistry and population-specific responses in physiological rates of Emiliania huxleyi to a broad CO2 range ...

Although coccolithophore physiological responses to CO2-induced changes in seawater carbonate chemistry have been widely studied in the past, there is limited knowledge on the variability of physiological responses between populations from different areas. In the present study, we investigated the s...

Full description

Bibliographic Details
Main Authors: Zhang, Yong, Bach, Lennart Thomas, Lohbeck, Kai T, Schulz, Kai Georg, Listmann, Luisa, Klapper, Regina, Riebesell, Ulf
Format: Dataset
Language:English
Published: PANGAEA 2023
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.960341
https://doi.pangaea.de/10.1594/PANGAEA.960341
Description
Summary:Although coccolithophore physiological responses to CO2-induced changes in seawater carbonate chemistry have been widely studied in the past, there is limited knowledge on the variability of physiological responses between populations from different areas. In the present study, we investigated the specific responses of growth, particulate organic (POC) and inorganic carbon (PIC) production rates of three populations of the coccolithophore Emiliania huxleyi from three regions in the North Atlantic Ocean (Azores: six strains, Canary Islands: five strains, and Norwegian coast near Bergen: six strains) to a CO2 partial pressure (pCO2) range from 120 to 2630 µatm. Physiological rates of each population and individual strain increased with rising pCO2 levels, reached a maximum and declined thereafter. Optimal pCO2 for growth, POC production rates, and tolerance to low pH (i.e., high proton concentration) was significantly higher in an E. huxleyi population isolated from the Norwegian coast than in those isolated ... : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2022) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2023-07-05. ...