Seawater carbonate chemistry and metabolic rate and nitrogenous waste handling in the early life stages of yellowfin tuna (Thunnus albacares) ...

Ocean acidification is predicted to have a wide range of impacts on fish, but there has been little focus on broad-ranging pelagic fish species. Early life stages of fish are thought to be particularly susceptible to CO2 exposure, since acid-base regulatory faculties may not be fully developed. We o...

Full description

Bibliographic Details
Main Authors: Heuer, Rachael M, Wang, Yadong, Pasparakis, Christina, Zhang, Wenlong, Scholey, Vernon, Margulies, Daniel, Grosell, Martin
Format: Dataset
Language:English
Published: PANGAEA 2023
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.957625
https://doi.pangaea.de/10.1594/PANGAEA.957625
Description
Summary:Ocean acidification is predicted to have a wide range of impacts on fish, but there has been little focus on broad-ranging pelagic fish species. Early life stages of fish are thought to be particularly susceptible to CO2 exposure, since acid-base regulatory faculties may not be fully developed. We obtained yellowfin tuna (Thunnus albacares) from a captive spawning broodstock population and exposed them to control or 1900 μatm CO2 through the first three days of development as embryos transitioned into yolk sac larvae. Metabolic rate, yolk sac depletion, and oil globule depletion were measured to assess overall energy usage. To determine if CO2 altered protein catabolism, tissue nitrogen content and nitrogenous waste excretion were quantified. CO2 exposure did not significantly impact embryonic metabolic rate, yolk sac depletion, or oil globule depletion, however, there was a significant decrease in metabolic rate at the latest measured yolk sac larval stage (36 h post fertilization). CO2-exposure led to a ... : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2022) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2023-04-18. ...