Seawater carbonate chemistry and molecular pathways, physiological function, biochemical responses, and health status of clams and scallops ...

In estuarine ecosystems, bivalves experience large pH fluctuations caused by the anthropogenic elevation of atmospheric CO2 and Cu pollution. This study investigates whether Cu toxicity increases indiscriminately in two bivalve species from different estuarine habitats as a result of elevated Cu bio...

Full description

Bibliographic Details
Main Authors: Cao, Ruiwen, Zhang, Y, Ju, Yuhao, Wang, Wei, Xi, Chenxiang, Liu, Wenlin, Liu, Kai
Format: Dataset
Language:English
Published: PANGAEA 2022
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.944344
https://doi.pangaea.de/10.1594/PANGAEA.944344
Description
Summary:In estuarine ecosystems, bivalves experience large pH fluctuations caused by the anthropogenic elevation of atmospheric CO2 and Cu pollution. This study investigates whether Cu toxicity increases indiscriminately in two bivalve species from different estuarine habitats as a result of elevated Cu bioaccumulation in acidified seawater. This was carried out by evaluating the effects of Cu exposure on two bivalve species (clams and scallops) for 28 d, at a series of gradient pH levels (pH 8.1, 7.8, and 7.6). The results demonstrated an increase in the Cu content in the soft tissues of clams and scallops in acidified seawater. Cu toxicity increased under acidified seawater by affecting the molecular pathways, physiological function, biochemical responses, and health status of clams and scallops. An iTRAQ-based quantitative proteomic analysis showed increased protein turnover, disturbed cytoskeleton and signal transduction pathways, apoptosis, and suppressed energy metabolism pathways in the clams and scallops ... : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-05-13.The species name used in the paper is Chlamys farreri. ...