Seawater carbonate chemistry and shell density, structure thickness and porosity for Nassarius nitidus and Collumbela rustica. Study funded under the project ECCO (HFRI, ID 343) ...

The increased absorption of atmospheric CO2 by the ocean reduces pH and affects the carbonate chemistry of seawater, thus interfering with the shell formation processes of marine calcifiers. The present study aims to examine the effects of ocean acidification and warming on the shell morphological p...

Full description

Bibliographic Details
Main Authors: Chatzinikolaou, Eva, Keklikoglou, Kleoniki, Grigoriou, Panos
Format: Dataset
Language:English
Published: PANGAEA 2021
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.938216
https://doi.pangaea.de/10.1594/PANGAEA.938216
Description
Summary:The increased absorption of atmospheric CO2 by the ocean reduces pH and affects the carbonate chemistry of seawater, thus interfering with the shell formation processes of marine calcifiers. The present study aims to examine the effects of ocean acidification and warming on the shell morphological properties of two intertidal gastropod species, Nassarius nitidus and Columbella rustica. The experimental treatments lasted for 3 months and combined a temperature increase of 3°C and a pH reduction of 0.3 units. The selected treatments reflected the high emissions (RCP 8.5) “business as usual” scenario of the Intergovernmental Panel on Climate Change models for eastern Mediterranean. The morphological and architectural properties of the shell, such as density, thickness and porosity were examined using 3D micro-computed tomography, which is a technique giving the advantage of calculating values for the total shell (not only at specific points) and at the same time leaving the shells intact. Nassarius nitidus had ... : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-11-16. The study was funded under the project ECCO (HFRI, Hellenic Foundation for Research and Innovation for the support of Postdoctoral Researchers, project ID 343) ...