Neodymium isotopes, planktic and benthic stable carbon and oxygen isotopes, sortable silt and percentage CaCO3 from sediment core TT1811-34GGC, SE Indian Ocean ...

Neodymium isotope data measured on mixed species of uncleaned planktic foraminifera, planktic (G. bulloides) and benthic (C. kullenbergi) stable carbon and oxygen isotopes, mean sortable silt size fraction measurements and CaCO3 contents of sediments from giant gravity core TT1811-34GGC, located wit...

Full description

Bibliographic Details
Main Authors: Williams, Thomas John, Sikes, Elisabeth L, Martin, Ellen E, Starr, Aidan, Umling, Natalie E, Glaubke, Ryan
Format: Dataset
Language:English
Published: PANGAEA 2021
Subjects:
AGE
Online Access:https://dx.doi.org/10.1594/pangaea.932953
https://doi.pangaea.de/10.1594/PANGAEA.932953
Description
Summary:Neodymium isotope data measured on mixed species of uncleaned planktic foraminifera, planktic (G. bulloides) and benthic (C. kullenbergi) stable carbon and oxygen isotopes, mean sortable silt size fraction measurements and CaCO3 contents of sediments from giant gravity core TT1811-34GGC, located within the SE Indian/Southern Ocean. Data span the last glacial cycle, from 118,000 years B.P. to the late Holocene. The chain of events surrounding the initiation and intensification of the last glacial cycle remain relatively poorly understood. In particular, the role of Southern Ocean paleocirculation changes is poorly constrained, in part, owing to a paucity of sedimentary records from this region. In this study we present multiproxy data – including neodymium isotope and sortable silt measurements – for paleocirculation changes within the deep (3167 m water depth) Indian sector of the Southern Ocean from a new sediment core, TT1811-34GGC (41.718°S, 80.163°E). We find a tight coupling between circulation changes, ...