Climate model (Consortium for Small-scale Modeling, COSMOS) results of different Laurentide Ice Sheet reconstructions during the Last Glacial Maximum in NetCDF format ...

Herein, we publish the simulated global annual mean sea surface temperature (THO), surface air temperature (SAT) over a time period of 100 years retrieved from equilibrium climate simulations for the Last Glacial Maximum (~21 ka BP). We investigate the range of temperature variability that occurs in...

Full description

Bibliographic Details
Main Authors: Hossain, Akil, Zhang, Xu, Lohmann, Gerrit
Format: Dataset
Language:English
Published: PANGAEA 2021
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.931163
https://doi.pangaea.de/10.1594/PANGAEA.931163
Description
Summary:Herein, we publish the simulated global annual mean sea surface temperature (THO), surface air temperature (SAT) over a time period of 100 years retrieved from equilibrium climate simulations for the Last Glacial Maximum (~21 ka BP). We investigate the range of temperature variability that occurs in response to uncertainties in the boundary conditions of Laurentide ice sheet (LIS). We performed LGM simulations, applying six different LIS reconstructions (ICE-6g, GLAC-1a, ANU, Gowan, Licciardi and PMIP3) in a fully coupled atmosphere-ocean-sea-ice model. The model data has been used in the publication by Hossain et al., 2021. The climate data has been produced with Consortium for Small-scale Modeling (COSMOS; ECHAM5/JSBACH/MPIOM/OASIS3), utilized at a resolution of T31 in the atmosphere with 19 vertical layers and a resolution of GR30 (~3.0°x1.8°) in the ocean with 40 vertical layers. The model setup refers to boundary conditions (terrestrial topography, ocean bathymetry), greenhouse gas concentrations (CO2 = ...