Seawater carbonate chemistry and coverage of turf algae, other macroalgae and corals

Human activities are rapidly changing the structure and function of coastal marine ecosystems. Large-scale replacement of kelp forests and coral reefs with turf algal mats is resulting in homogenous habitats that have less ecological and human value. Ocean acidification has strong potential to subst...

Full description

Bibliographic Details
Main Authors: Harvey, Ben P, Allen, Ro, Agostini, Sylvain, Hoffmann, L J, Kon, Koetsu, Summerfield, Tina C, Wada, Shigeki, Hall-Spencer, Jason M
Format: Dataset
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2021
Subjects:
pH
Online Access:https://dx.doi.org/10.1594/pangaea.930799
https://doi.pangaea.de/10.1594/PANGAEA.930799
Description
Summary:Human activities are rapidly changing the structure and function of coastal marine ecosystems. Large-scale replacement of kelp forests and coral reefs with turf algal mats is resulting in homogenous habitats that have less ecological and human value. Ocean acidification has strong potential to substantially favour turf algae growth, which led us to examine the mechanisms that stabilise turf algal states. Here we show that ocean acidification promotes turf algae over corals and macroalgae, mediating new habitat conditions that create stabilising feedback loops (altered physicochemical environment and microbial community, and an inhibition of recruitment) capable of locking turf systems in place. Such feedbacks help explain why degraded coastal habitats persist after being initially pushed past the tipping point by global and local anthropogenic stressors. An understanding of the mechanisms that stabilise degraded coastal habitats can be incorporated into adaptive management to better protect the contribution of coastal systems to human wellbeing. : In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-04-19.