Grain sizes and geochemistry of Holocene sediments in the Arabian Sea

The Indian Summer Monsoon (ISM) with its rainfall is the lifeline for people living on the Indian subcontinent today and possibly was the driver of the rise and fall of early agricultural societies in the past. Intensity and position of the ISM have shifted in response to orbitally forced thermal la...

Full description

Bibliographic Details
Main Authors: Burdanowitz, Nicole, Rixen, Tim, Gaye, Birgit, Emeis, Kay-Christian
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2020
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.925909
https://doi.pangaea.de/10.1594/PANGAEA.925909
Description
Summary:The Indian Summer Monsoon (ISM) with its rainfall is the lifeline for people living on the Indian subcontinent today and possibly was the driver of the rise and fall of early agricultural societies in the past. Intensity and position of the ISM have shifted in response to orbitally forced thermal land-ocean contrasts. At the northwestern monsoon margins, interactions between the subtropical westerly jet (STWJ) and the ISM constitute a tipping element in the Earth's climate system, because their non-linear interaction may be a first-order influence on rainfall. We reconstructed marine sea surface temperature (SST), supply of terrestrial material and vegetation changes from a very well-dated sediment core from the northern Arabian Sea to reconstruct the STWJ-ISM interaction. The Holocene record (from 11,000 years) shows a distinct, but gradual, southward displacement of the ISM in the Early to Mid-Holocene, increasingly punctuated by phases of intensified STWJ events that are coeval with interruptions of North Atlantic overturning circulation (Bond events). Effects of the non-linear interactions culminate between 4.6-3 ka BP, marking a climatic transition period during which the ISM shifted southwards and the influence of SWTJ became prominent. The lithogenic input shows an up to 4-fold increase after this time period signaling the strengthened influence of agricultural activities of the Indus civilization with enhanced erosion of soils amplifying the impact of Bond events and adding to the marine sedimentation rates adjacent to the continent.