A multiproxy record of IODP Site 341-U1421 ...

The uncertain response of marine terminating outlet glaciers to climate change at time scales beyond short-term observation limits models of future sea level rise. At temperate tidewater margins, abundant subglacial meltwater forms morainal banks (marine shoals) or ice-contact deltas that reduce wat...

Full description

Bibliographic Details
Main Authors: Cowan, Ellen A, Zellers, Sarah D, Müller, Juliane, Walczak, Maureen H, Worthington, Lindsay L, Caissie, Beth, Clary, Wesley A, Jaeger, John M, Gulick, Sean P S, Pratt, Jacob W, Mix, Alan C, Fallon, Stewart J
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA 2020
Subjects:
LGM
Online Access:https://dx.doi.org/10.1594/pangaea.919655
https://doi.pangaea.de/10.1594/PANGAEA.919655
Description
Summary:The uncertain response of marine terminating outlet glaciers to climate change at time scales beyond short-term observation limits models of future sea level rise. At temperate tidewater margins, abundant subglacial meltwater forms morainal banks (marine shoals) or ice-contact deltas that reduce water depth, stabilizing grounding lines and slowing or reversing glacial retreat. Here we present a radiocarbon-dated record from Integrated Ocean Drilling Program (IODP) Site U1421 that tracks the terminus of the largest Alaskan Cordilleran Ice Sheet outlet glacier during Last Glacial Maximum climate transitions. Sedimentation rates, ice-rafted debris, and microfossil and biogeochemical proxies, show repeated abrupt collapses and slow advances typical of the tidewater glacier cycle observed in modern systems. When global sea level rise exceeded the local rate of bank building, the cycle of readvances stopped leading to irreversible retreat. These results support theory that suggests sediment dynamics can control ...