Age model, alkenones and stable isotopes of sediment core MSM45-31-1 (MSM45_431-1) ...

The Labrador Sea is important for the modern global thermohaline circulation system through the formation of intermediate Labrador Sea Water (LSW) that has been hypothesized to stabilize the modern mode of North Atlantic deep-water circulation. The rate of LSW formation is controlled by the amount o...

Full description

Bibliographic Details
Main Authors: Lochte, Annalena Antonia, Schneider, Ralph R, Kienast, Markus, Repschläger, Janne, Blanz, Thomas, Garbe-Schönberg, Dieter, Andersen, Nils
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA 2019
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.904693
https://doi.pangaea.de/10.1594/PANGAEA.904693
Description
Summary:The Labrador Sea is important for the modern global thermohaline circulation system through the formation of intermediate Labrador Sea Water (LSW) that has been hypothesized to stabilize the modern mode of North Atlantic deep-water circulation. The rate of LSW formation is controlled by the amount of winter heat loss to the atmosphere, the expanse of freshwater in the convection region and the inflow of saline waters from the Atlantic. The Labrador Sea, today, receives freshwater through the East and West Greenland Currents (EGC, WGC) and the Labrador Current (LC). Several studies have suggested the WGC to be the main supplier of freshwater to the Labrador Sea, but the role of the southward flowing LC in Labrador Sea convection is still debated. At the same time, many paleoceanographic reconstructions from the Labrador Shelf focussed on late Deglacial to early Holocene meltwater run-off from the Laurentide Ice Sheet (LIS), whereas little information exists about LC variability since the final melting of the ... : Supplement to: Lochte, Annalena Antonia; Schneider, Ralph R; Kienast, Markus; Repschläger, Janne; Blanz, Thomas; Garbe-Schönberg, Dieter; Andersen, Nils (2020): Surface and subsurface Labrador Shelf water mass conditions during the last 6000 years. Climate of the Past, 16(4), 1127-1143 ...