Marine Sediment data along the Yukon Coastal Plain, Canada ...
Narrowing uncertainties about carbon cycling is important in the Arctic where rapid environmental changes contribute to enhanced mobilization of carbon. Here we quantify soil organic carbon (SOC) contents of permafrost soils along the Yukon Coastal Plain and determine the annual fluxes from erosion....
Main Authors: | , , , , |
---|---|
Format: | Dataset |
Language: | English |
Published: |
PANGAEA
2019
|
Subjects: | |
Online Access: | https://dx.doi.org/10.1594/pangaea.897273 https://doi.pangaea.de/10.1594/PANGAEA.897273 |
Summary: | Narrowing uncertainties about carbon cycling is important in the Arctic where rapid environmental changes contribute to enhanced mobilization of carbon. Here we quantify soil organic carbon (SOC) contents of permafrost soils along the Yukon Coastal Plain and determine the annual fluxes from erosion. Different terrain units are assessed based on surficial geology, morphology, and ground ice conditions. To account for the volume of wedge ice and massive ice in a unit, sample SOC contents are reduced by 19% and sediment contents by 16%. The SOC content in a 1 m**2 column of soil varies according to the height of the bluff, ranging from 30 to 662 kg, with a mean value of 183 kg. Forty-four per cent of the SOC is within the top 1 m of soil and values vary based on surficial materials, ranging from 30 to 53 kg C/m**3, with a mean of 41 kg. Eighty per cent of the shoreline is erosive with a mean annual rate of change is 0.7 m/a. This results in a SOC flux per meter of shoreline of 131 kg C/m/a, and a total flux for ... |
---|