Oligocene stable isotope record and calcareous nannofossils of IODP Site 208-1264, supplement to: Liebrand, Diederik; Raffi, Isabella; Fraguas, Ángela; Laxenaire, Rémi; Bosmans, Joyce H C; Hilgen, Frederik J; Wilson, Paul A; Batenburg, Sietske J; Beddow, Helen M; Bohaty, Steven M; Bown, Paul R; Crocker, Anya J; Huck, Claire E; Lourens, Lucas Joost; Sabia, Luciana (2018): Orbitally Forced Hyperstratification of the Oligocene South Atlantic Ocean. Paleoceanography and Paleoclimatology, 33(5), 511-529

Pelagic sediments from the subtropical South Atlantic Ocean contain geographically extensive Oligocene ooze and chalk layers that consist almost entirely of the calcareous nannofossil Braarudosphaera. Poor recovery and the lack of precise dating of these horizons in previous studies has limited our...

Full description

Bibliographic Details
Main Authors: Liebrand, Diederik, Raffi, Isabella, Fraguas, Ángela, Laxenaire, Rémi, Bosmans, Joyce H C, Hilgen, Frederik J, Wilson, Paul A, Batenburg, Sietske J, Beddow, Helen M, Bohaty, Steven M, Bown, Paul R, Crocker, Anya J, Huck, Claire E, Lourens, Lucas Joost, Sabia, Luciana
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA - Data Publisher for Earth & Environmental Science 2018
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.878110
https://doi.pangaea.de/10.1594/PANGAEA.878110
Description
Summary:Pelagic sediments from the subtropical South Atlantic Ocean contain geographically extensive Oligocene ooze and chalk layers that consist almost entirely of the calcareous nannofossil Braarudosphaera. Poor recovery and the lack of precise dating of these horizons in previous studies has limited our understanding of the exact number of acmes, their timing and durations, and the causes of their recurrence. Here we present a high-resolution, astronomically tuned stratigraphy of Braarudosphaera oozes (29.5-27.9 Ma) from Ocean Drilling Program Site 1264 in the subtropical southeastern Atlantic Ocean. We identify seven acme events in the Braarudosphaera abundance record. The longest lasting acme event corresponds to a strong minimum in the ~2.4-My eccentricity cycle, and four acme events coincide with ~110-ky and 405-ky eccentricity maxima. We propose that eccentricity-modulated precession forcing of the freshwater budget of the South Atlantic Ocean resulted in the episodic formation of a shallow pycnocline and hyperstratification of the upper water column. We speculate that stratified surface water conditions may have served as a virtual sea floor, which facilitated the widespread Braarudosphaera acmes. This explanation reconciles the contrasting distribution patterns of Braarudosphaera in the modern ocean, limited largely to shallow water coastal settings, compared to their relatively brief and expanded oceanic distribution in the past.