Particle size spectra and plankton community size structure: Response to elevated CO2 during an in situ mesocosm experiment ...

In this study, we report from a long-term in situ mesocosm experiment, where we investigated the response of natural plankton communities in temperate waters (Gullmarfjord, Sweden) to elevated CO2 concentrations and OA as expected for the end of the century (~760 µatm pCO2). Based on a plankton-imag...

Full description

Bibliographic Details
Main Authors: Taucher, Jan, Haunost, Mathias, Boxhammer, Tim, Bach, Lennart Thomas, Algueró-Muñiz, Maria, Riebesell, Ulf
Format: Article in Journal/Newspaper
Language:English
Published: PANGAEA 2017
Subjects:
Online Access:https://dx.doi.org/10.1594/pangaea.871452
https://doi.pangaea.de/10.1594/PANGAEA.871452
Description
Summary:In this study, we report from a long-term in situ mesocosm experiment, where we investigated the response of natural plankton communities in temperate waters (Gullmarfjord, Sweden) to elevated CO2 concentrations and OA as expected for the end of the century (~760 µatm pCO2). Based on a plankton-imaging approach, we examined size structure, community composition and food web characteristics of the whole plankton assemblage, ranging from picoplankton to mesozooplankton, during an entire winter-to-summer succession. The plankton imaging system revealed pronounced temporal changes in the size structure of the copepod community over the course of the plankton bloom. These observed shift towards smaller individuals resulted in an overall decrease of copepod biomass by 25%, despite increasing numerical abundances. Furthermore, we observed distinct effects of elevated CO2 on biomass and size structure of the entire plankton community. Notably, the biomass of copepods, dominated by Pseudocalanus acuspes, displayed a ... : Supplement to: Taucher, Jan; Haunost, Mathias; Boxhammer, Tim; Bach, Lennart Thomas; Algueró-Muñiz, Maria; Riebesell, Ulf (2017): Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects. PLoS ONE, 12(2), e0169737 ...